July 14, 1999

RadiatorRadius Server

e — Open System Consultants Pty. Ltd.
(, Copyright (C) 1998
l
Radiator

Installation and Reference manual
For Radiator version 2.14

1.0 Table of Contents

1.0 Table of Contents 1
2.0 Introduction 4
3.0 Installation (Unix) 5

4.0 Installation (Windows 95/98/NT) 6
4.1 ActiveState 6

4.2 Other Win95 distributions 7
4.3 Notes for PC installers and users 7

5.0 Postinstallation and configuration 8
5.1 Trouble? 9

6.0 Configuration 9
6.1 General information 9
6.2 Special characters in file names and other parameters 10
6.3 Global parameters 12
6.4 <Client xxxxxx> 17
6.5 <SessionDatabase SQL> 22
6.6 <SessionDatabase DBM> 25
6.7 <LogFILE> 26
6.8 <Log SYSLOG> 27
6.9 <Log SQL> 27
6.10 <SNMPAgent> 28
6.11 <Realm realmname> 29

1of 124

Table of Contents

7.0
8.0

9.0
10.0
11.0

12.0

13.0

14.0
15.0

6.12 <Handler attribute=value,attribute=value,> 30

6.13 <AuthBy xxxxxx> 36

6.14 <AuthBy TEST> 40

6.15 <AuthBy FILE> 40

6.16 <AuthBy DBFILE> 42

6.17 <AuthBy CDB> 43

6.18 <AuthBy GROUP> 44

6.19 <AuthBy IPASS> 46

6.20 <AuthBy UNIX> 47

6.21 <AuthBy EXTERNAL> 49

6.22 <AuthBy NT> 50

6.23 <AuthBy SQL> 51

6.24 <AuthBy RADIUS> 58

6.25 <AuthBy EMERALD> 61

6.26 <AuthBy PLATYPUS> 62

6.27 <AuthBy RODOPI> 63

6.28 <AuthBy LDAP> <AuthBy LDAP2> and <AuthBy
LDAPSDK> 64

6.29 <AuthBy SYSTEM> 67

6.30 <AuthBy TACACSPLUS> 68

6.31 <AuthBy NISPLUS> 68

6.32 <AuthBy PAM> 71

6.33 <AuthBy PORTLIMITCHECK> 71

radiusd 73

radpwtst 74
8.1 Theradpwtst GUI 78

builddbm 79
buildsgl 81

radacct.cgi 83

11.1 Installation 83
11.2 Usage 84

11.3 Secure mode 85

radwho.cgi 87
12.1 Installation 87

12.2 Usage 88

Check and Reply items 89
13.1 Checkitems 90
13.2 Replyitems 95

Rewriting user names 96
File formats 97

2 of 124

Radiator Radius Server

Table of Contents

16.0

17.0

18.0
19.0

20.0
21.0

22.0
23.0

15.1
15.2
15.3
15.4
15.5
15.6
15.7

Dictionary File 97

Flat file user database 100
DBM user database 101
Unix password file 101
Accounting log file 101
Password log file 102
Portlist file 102

High availability for radiusd 103

16.1
16.2
16.3
16.4

Using restartWrapper 103
Using init 104

Using inetd 104

As a System Service on NT 105

Adding custom AuthBy modules 106

17.1
17.2
17.3
17.4
17.5

Loading and configuring 107
Handling Requests 107
AuthGeneric 108
Step-by-step 108

Class Hierarchy 109

Compatibility with Livingston and other servers 110
Interoperation with iPASS Roaming 111

19.1
19.2

iPASS Outbound 111
iPASS Inbound 113

Interoperation with GRIC Global Roaming 114
Using SQL with various database vendors 115

21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8

General 116
mSQL 116
mysql 117
Oracle 117
Sybase 118
PostgreSQL 118
ODBC 119
Interbase 119

Performance and Tuning 119
Getting Help 121

23.1
23.2
23.3
23.4
23.5
23.6

Support contract holders 121
No support contract 122

What to do if you need help 122
Bug reports 123

RFCs 123

Other mailing lists 123

Radiator Radius Server

3of 124

Introduction

2.0

Introduction

This document describes how to install and configure the Radiator Radius server from
Open System Consultants.

Radius is the de-facto standard protocol for authenticating users and for recording
accounting information. It is commonly used by Terminal Servers whenever a user logs
on and off a dialup Internet service. It is supported and used by many Terminal Server
vendors such as Cisco, Ascend, Livingston and others. See RFC 2138 and RFC 2139 for
more details on the Radius protocol.

Radiator is a highly configurable and extensible Radius server that allows you to easily
customize and control how you authenticate users and record accounting information.
Radiator can authenticate users from passwords held in:

* Flat files

* DBM files

¢ Unix password files and similar formats
* Remote Radius servers

e SQL databases, including Oracle, Sybase, Informix, Microsoft SQL 6.5, Ingres,
mSQL, mysql, ODBC and others.

¢ PASS Roaming Network

* GRIC Global Roaming Network

¢ Platypus ISP billing system from Boardtown
* Rodopi ISP billing system

* Emerald ISP billing system from IEA

¢ Interbiller ISP billing system

* LDAP databases

e NIS+

e PAM

* TacacsPlus

* your own legacy user database

¢ Native NT user database (even from unix!)
e External programs

e Other methods contributed by Radiator users

Radiator can record user accounting information in

¢ Flat files in standard Radius detail file format
e Unix wtmp format files

* SQL databases, including Oracle, Sybase, Informix, Microsoft SQL 6.5, Ingres,
mSQL, mysql, ODBC and others.

¢ Remote Radius servers

4 of 124

Radiator Radius Server

Installation (Unix)

3.0

* Platypus ISP billing system from Boardtown
* Rodopi ISP billing system

e Emerald ISP billing system from IEA

* Your own legacy usage database

e External programs

Radiator can manage multiple clients and realms, possibly with multiple different
authentication methods in each realm, and includes special features not found in other
servers like username rewriting and vendor-specific Radius attributes.

Radiator runs on most Unix hosts, Windows NT, Windows 95, Windows 98 and Rhap-
sody. It is written entirely in Perl, and is therefore highly portable. Full source code is
supplied, so you can alter the behaviour of Radiator’s internals if you need to. There is a
standardized way of adding new authentication and accounting handlers, so you can
easily integrate Radiator with other legacy systems and software.

You will need to be familiar with system administration to install Radiator. You will
need to have a basic understanding of Radius and your network’s authentication and
accounting requirements in order to configure Radius. You will need to have a basic
understanding of SQL in order to configure AuthBy SQL. You will need to have a basic
understanding of LDAP in order to configure AuthBy LDAP.

Installation (Unix)

Radiator requires Perl 5.004 or better. Perl can be obtained from your nearest CPAN
archive. See http://www.perl.com. You should install and test Perl before proceeding
further.

Radiator requires the MD5 Perl library package (version 1.7 or better) by Neil Winton.
It can be obtained from your nearest CPAN archive. See http://www.perl.com. You
should install and test MD5 before proceeding further.

Hint: On some Unix versions (notably Red Hat 5.2 and others), MD5 will be installed
by default when you install Perl, so you won't need to do it again.

If you wish to use Radiator’'s AuthBy SQL module to authenticate and record account-
ing to an SQL database, you must install the DBI Perl library (version 0.90 or better),
and the DBD Perl library for your database. Both can be obtained from your nearest
CPAN archive. See http://www.perl.com. If you are going to use SQL, you should
install and test you chose RDBMS first, then install and test DBI and then the DBD Perl
module for your RDBMS.

If you wish to use Radiator’s AuthBy LDAP module to authenticate from an LDAP
database, you must install the LDAPapi.pm Perl library from Clayton Donley don-
ley@cig.mcel.mot.com (version 1.40a or better). It can be obtained from your nearest
CPAN archive. See http://www.perl.com. If you are going to use LDAP, you should
install and test LDAPapi and possibly your LDAP server (if you plan to run a local
LDAP server).

Radiator Radius Server 50f 124

Installation (Windows 95/98/NT)

4.0

Radiator is supplied as a gzipped, tarred distribution file. The standard distribution file
name isRadiator-X.Y.tgz , Where “X.Y” is the revision number. Put the distribu-
tion archive somewhere suitable (perhagss/local/src) and unpack it with
something like:

zcat Radiator-X.Y.tgz | tar xvf -

Where zcat is the GNU zcat(1) command. If your path does not include the GNU zcat,
you could try:

cat Radiator-X.Y.tgz | gunzip -c| tar xvf -

In either case, this will create a directory calRatliator-X.Y in the current direc-
tory.

cd Radiator-X.Y
perl Makefile.PL
make test

This will run a fairly exhaustive test suite on your radius server. (Note: If you wish to
test the AuthBy SQL or LDAP modules too, you will first have to edit radius.cfg and
configure those modules.)

make install

This will install the Radius modules that Radiator requires in your site-perl directory
(typically /usr/local/lib/perl5/site_perl). It will install the radius daem@diusd)

and the command line password test prograapivtst), the DBM file builder
(builddbm) and the SQL database buildbuildsgl) in your usual directory for
local executables (typically /usr/local/bin).

Installation (Windows 95/98/NT)

4.1

The installation procedure for NT and Windows 95 is basically the same as for Unix,
with some wrinkles as described below.

Radiator will run very nicely on a PC running NT 4, Windows 95 or Windows 98, pro-
vided you have a suitably configured Perl available. We recommend that you use the
free ActiveState distribution of Perl, available from http://www.ActiveState.com, and
these installation instructions assume you are using that port. The Active State port
installs quickly and easily, and almost all the optional modules are easily available and
easy to install.

ActiveState

1. Download and install ActiveState Perl from http://www.ActiveState.com. During
installation, accept all the defaults. Allow setup to reboot your computer.

2. Connect your computer to the Internet so you can download the required Perl mod-
ules from ActiveState using PPM.

3. Double click on c:\perl\5.00502\bin\ppm (the Perl package manager). You will get a
command line screen running ppm witRRM>prompt.

6 of 124

Radiator Radius Server

Installation (Windows 95/98/NT)

4.2

4.3

4. Type “install MD5". The MD5 package will be downloaded and installed.

5. If you plan to use SQL authentication, typestall DBI to install the main DBI
package. Then find the database specific module(s) you want by $gaira
DBD then install the one(s) you need for your database. (for example to install DBD-
ODBC, type “install DBD-ODBC").

6. If you plan to use LDAP authentication, tyipstall PerLDAP
7. Close the PPM window. Perl is now installed.
8. Unpack your Radiator distribution to a suitable location. Recent versions of WinZip

can be used to decompress and unpack the distribution file. If you have problems
unzipping, refer the Radiator FAQ at http://www.open.com.au/radiator/fag.html)

9. Start an MSDOS command window, change directories to the place where you
unpacked Radiator.

10. Type perl Makefile.PL . This will check that your distribution is complete.

11.Run the regression tests witlerl test.pl . You should see lots of lines like “ok
xx”, and none saying “not ok xx”.

12. Continue with post-installation tasks and configuration at Section 5.0 on page 8.

Other Win95 distributions

Radiator will run with Sarathy’s binary distribution (perl5.00402-bindist04-bc.tar.gz)
available from CPAN (see http://www.perl.com), but it's a bit more difficult to set up.
Sarathy’s distribution does include a number of important modules built in (such as
MD5, DBI and ODBC) but does not include crypt(). We recommend that for a new
installation, you should use ActiveState.

If your Perl does not support crypt, you will not be able to use AuthBy UNIX, or any
AuthBy with Unix encrypted passwords. You don’t need DBI/DBD unless you want
AuthBy SQL.

Radiator will also run with a Perl that you build yourself, but for this you will need a
suitable C compiler and software building skills.

We tested Radiator on a 166MHz PC running both Windows 95 and NT 4 Service pack
1. We used Sarathy’s binary distribution (perl5.00402-bindist04-bc.tar.gz) available
from CPAN. In order to test with crypt(), we used a modified Des-perl-al.tar.gz from
CPAN and libdes.tar.gz DES library version 3.00 from Eric Young.

Notes for PC installers and users

* At present <AuthBy LDAP> only works with Net-LDAPapi. It will not work with
the PerLDAP module from ActiveState. If you want to use the ActiveState
PerLDAP, use <AuthBy LDAPSDK>.

* The Radiator .gz distribution file can be unpacked with recent versions of WinZip.

* You will probably want to use something like nmake (part of the Microsoft Visual
C++ package) or dmake (packaged with some Perl binary distributions) instead of

Radiator Radius Server 7 of 124

Post installation and configuration

5.0

make to do the installation. If you can't get one of these makes, you can just run
Radiator from the directory where you unpacked it.

Some DBM file formats produced by AnyDBM_File on a PC are not compatible
with those produced by Unix. So if you create them with builddbm on one host, they
may not be readable by Radiator on a different kind of host. If in doubt, build the
DBM file on the same type of machine as the target host.

You can test and run Radiator from the directory where you unpacked it. After test-
ing is complete, you can install the Radiator libraries and binaries in their usual
places as described in the following bullet.

If you havemake available, you can install the software by running
make install

If you don’t have a working make, you can use this instead:
perl Makefile.PL install

The installation process will install the Radiator executables in the Perl binary direc-
tory, typicallyc:\perl\5.00502\bin. When you run radiusd, builddbm,

buildsql and radpwtst, you will need to make sure Perl is in your path, and to run
them like:

perl c:\perl\5.00502\bin\radiusd

Perl on Win95 automatically maps Unix style file names to DOS style (i.e changes /
to\ etc.), so when you specify file names in the Radiator configuration file on Win95,
you can use either Unix or DOS styles. Our best advice is to choose one and use it
consistently.

Some ODBC drivers on Windows 95 (notably Oracle) intercept the SIGINT handler,
which makes it hard to kill radiusd with Control C from within an MSDOS window.
We suggest you create a shortcut to run radiusd, then you can always shut the
MSDOS window to kill radiusd.

Daemon mode is not yet supported on Win95 or NT.
Radpwtst in -gui mode does not work properly, due to a bug in Tk.

Post installation and configuration

By now, you should have Radiator installed and the regression test suite should have
reported all tests OK. You should now:

Study the configuration information in the rest of this document.
Find out which Radius clients and realms you need to serve.
Configure your Radiator by creating and editing the configuration file.

Create a directory for your user database(s) and dictionary file. Place your dictionary
there. Put a test user database there too. Make sure your configuration file’s DbDir
parameter specifies that directory.

Run theradiusd daemon, specifying where the configuration file is with-the
config_file flag.

Test Radiator with theadpwtst test utility.

8 of 124

Radiator Radius Server

Configuration

51

6.0

e Build your real user database(s).

* Arrange forradiusd to start automatically at boot time. See Section 16.0 on
page 103.

Trouble?

If you have trouble installing or running Radiator, you should first consult the patches
directory for your release, typically something Iikp://www.open.com.au/
radiator/downloads/patches-x.xx. If you still have trouble, consult the
instructions inSection 23.0 on page 121.

Configuration

6.1

General information
This section describes the Radiator configuration file and the statements that you can
use in the configuration file to control the behaviour of the Radiator server, radiusd.

When radiusd starts, it reads a configuration file. The default filename for the configura-
tion file is/usr/local/etc/radius.cfg , but you can specify an alternate con-
figuration file with the.config_file flag. There is an example configuration file in

the Radiator distribution that shows all the types of parameters and clauses that you can
configure, and examples of how to use them. It might be a good starting point for your
own configuration file. There is also a very simple exarsiphple.cfg in the

goodies directory in the Radiator distribution.

In general terms, the configuration file allows you control the following things:

¢ Behaviour of the server in general.
* Which Radius clients the server will respond to.
* Which Radius realms the server will work with.

* For each realm, what method should be used for authenticating users and storing
accounting information.

¢ For each authentication method for each realm, the configuration of the authentica-
tion module.

The configuration file is an ASCII text file that can be edited by any text editor. Leading
white space in each line is ignored, so you can use indentation to make your configura-
tion file easier to read. Case is important in all parameter names and clauses.

Each line in the configuration file can be one of:

* Comment line with a#’ as the first character. Anything including and after te *
is ignored. Blank lines are also ignored. Example:

This is a comment

* An include directive. The worithclude followed by a filename. The named file
will be opened and read to the end as a configuration file before processing of the

Radiator Radius Server 9of 124

Configuration

current file continues. Special filename characters are permitted (see Section 6.2 on
page 10). Files can be recursively included to any depth. Example:

include %D/clients.cfg

e Parameter setting. The first word is the name of the parameter to set, all the follow-
ing words and digits are the value to be used for the parameter. All the parameters
you can set in the configuration file are described in this document. Example:

Trace 4

e Parameter setting from afile. If a parameter is set to the Vadudilename”
then the value of the parameter will be retrieved from the file néiteadme
This is probably most useful for putting long parameters like the Hooks in an exter-
nal file. For example, this will load the code for PreAuthHook from the external file
hook.pl:

PreAuthHook file:"hook.pl”

e Start or end of a clause. A clause is a collection of parameter settings related to a sin-
gle feature in the server. The first line in a clause is surrounded by angle brackets
(‘<" and *>"), for example<Client fred> , which would mark the beginning of
the configuration for client with the DNS name “fred”. Subsequent lines are inter-
preted as parameter settings for the feature, until the end of the clause is seen. The
end of the clause is surrounded by angle brackets with a slash, for example:

<Client DEFAULT>
Configuration parameters for the Client go here

</Client>

Hint: The configuration file will usually contain the shared secrets that allow your

Radius clients to communicate with the Radiator Radius server. It might also contain
passwords for access to databases etc. This means that for security reasons, you should
keep the configuration file as secure as possible. On Unix, you should make sure that it
is readable only by the user that radiusd runs as.

Hint: long lines in your configuration file can be split over multiple lines by using the
“\" character at the end of each line except the last:

AuthSelect select s.password, g.session_timeout \
s.check_items s.reply_items \
from subscribers s, groups g \
where username='%n’ and s.group \
= g.name

6.2 Special characters in file names and other parameters

Wherever you can specify a file name in the Radiator configuration file, you can use
some special characters in the path name. These special characters can also be used in a
number of other configuration file parameters. These special characters will be replaced
at run time, so you can dynamically change file paths and the like so they depend on
such things as the date, realm, username etc.

10 of 124 Radiator Radius Server

Configuration

Special characters are introduced by a ‘%’, followed by a single character. Different
characters are replaced at run-time by different information. The following special char-
acters are available:

TABLE 1. Special string formatting characters

Specifier Is replaced at run-time by:

from the current time:

%l The current time in long format, eg Thu Jul 1 08:38:21 1999

%t The current time in seconds since Jan 1 1970

%S the current second (0-59)

%M The current minute (0-59)

%H The current hour (0-23)

%d Current day of the month (2 digits)

%m Current month number (2 digits)

%Y Current year (4 digits)

%y Last 2 digits of the current year (2 digits)
from the Timestamp of the current packet (if any):

%0 The Timestamp in long format, eg Thu Jul 1 08:38:21 1999

%b The Timestamp in seconds since Jan 1 1970

%p the Timestamp second (0-59)

%k The Timestamp minute (0-59)

%)j The Timestamp hour (0-23)

%i The Timestamp day of the month (2 digits)

%g The Timestamp month number (2 digits)

%f The Timestamp year (4 digits)

%e Last 2 digits of the Timestamp year (2 digits)
other information from the current packet (if any):

%c IP address of the client who sent the current request (if any)

%C Client name of the client who sent the current request (if any)

%R The realm of the username named in the current request (if any), after any|
RewriteUsername was applied. Note: this will not be set by DefaultRealm.

%N The NAS-IP-Address in the current request (if any)

%n The User-Name (i.e. the full user name, including the realm) currently being
authenticated, after any RewriteUsername was applied.

%U The User-Name currently being authenticated with the realm (if any) stripped
off, after any RewriteUsername was applied.

%u The full original User-Name that was received, before any RewriteUsername
were applied.

Radiator Radius Server 11 of 124

Configuration

TABLE 1.

6.3

6.3.1

6.3.2

Special string formatting characters

Specifier Is replaced at run-time by:

%T The request type of the current request (if any)

%a The Framed-IP-Address of the current request (if any)

%({attr} The value of the named attribute in the current packet (if any).
For example, %{Framed-IP-Address} is the same as %a

miscellaneous

%% The percent character

%D The value of DbDir as configured in your Radiator configuration file

%L The value of LogDir as configured in your Radiator configuration file

%h The hostname this server is running on

You should note that some of these specifiers are only valid when a Radius message is
being processed. In any other context, such a specifier will be replaced by an empty
string.

In the following example, the log file will be stored in LogDir, with a name that starts
with the current year. If LogDir wasar/log and the current year was 1998, this
would result in a logfile name éfar/log/1998-lodfile

LogFile %L/%Y-logfile

Global parameters

These parameters apply to the server as a whole, and do not appear inside a clause. They
are used to control the behaviour of the server as a whole.

Foreground

If this parameter is set, it makes the server run in the foreground instead of as a detached
daemon. No argument is required. The default behaviour is to run as a daemon. You
must run in the foreground if you want to run Radiator from inetd (see Section 16.3 on
page 104), or from restartWrapper (see Section 16.1 on page 103).

Run in the foreground
Foreground

LogStdout

If this parameter appears, it makes all logging output appear on STDOUT as well as in
the log file. No argument is required. The default behaviour is not to log to STDOUT.
You must be running in Foreground mode for this to have an effect.

Log to stdout
LogStdout

12 of 124

Radiator Radius Server

Configuration

6.3.3

6.3.4

6.3.5

Trace

Sets the priority level of trace messages to be logged in the log file (and printed on std-
out if LogStdout is defined). The argument is an integer from 0 to 5, with the following
meanings:

* 0 ERR. Error conditions. Serious and unexpected failures
* 1 WARNING. Warning conditions. Unexpected failures

* 2 NOTICE. Normal but significant conditions.

¢ 3 INFO. Informational messages.

* 4 DEBUG. Debugging messages.

* 5 Incoming raw packet dumps in hexadecimal.

A trace level of 4 or more will produce all the possible tracing messages, including
dumps of every Radius message received and sent: you probably don't want that in a
production environment. The default tracing level is 0. You can change the current trac-
ing level while Radiator is running on Unix platforms by signalling it with SIGUSR1

and SIGUSR2. See Section 7.0 on page 73.

Show everything up to and including INFO level
Trace 3

AuthPort

Specifies which port Radiator will listen on for Radius authentication requests. The
argument may be either a numeric port number or an alphanumeric service name as
specified inetc/services (or its moral equivalent on your system). The default
port is 1645. Note that the officially assigned port number for Radius accounting has
recently been changed to 1812.

Listen for authentication requests on port 1812 as per RFC
#2138
AuthPort 1812

Note: Actually Radiator will also service accounting requests received on the authenti-
cation port without complaint.

AcctPort

Specifies which port Radiator will listen on for Radius accounting requests. The argu-
ment may be either a numeric port number or an alphanumeric service name as specified
in /etc/services (or its moral equivalent on your system). The default port is 1646.
Note that the officially assigned port number for Radius accounting has recently been
changed to 1813.

Listen for accounting requests on port 1813 as
per RFC 2139
AcctPort 1813

Note: Actually Radiator will also service authentication requests received on the
accounting port without complaint.

Radiator Radius Server 13 of 124

Configuration

6.3.6

6.3.7

6.3.8

6.3.9

6.3.10

BindAddress

This optional parameter specifies a single host address to listen for Radius requests on.
It is only useful if you are running Radiator on a multi-homed host (i.e. a host that has
more than one network address). Defaults to 0.0.0.0 (i.e. listens on all networks con-
nected to the host).

Only listen on one network
BindAddress 203.63.154.0

LogDir

Specifies the directory to be used to store log files. Defaulattol/radius

For convenience, the LogDir directory name can be referred to as %L in any file name
path in this configuration file.

Put log files in /opt/radius instead
LogDir /opt/radius

DbDir

Specifies the directory to be used for user database files. Defduli¢/limcal/

etc/raddb . For convenience, the DbDir directory name can be referred to as %D in
any file name path in this configuration file.

Look in /opt/etc/raddb for username database
DbDir /opt/etc/raddb

LogFile

The name of the log file. All logging messages will be time stamped and written to this
file. Each time this file is written to by Radiator, it opens, writes and then closes the file.
This means that you can safely rotate the log file at any time. The file name can include
special path name characters as defined in “Special characters in file names and other
parameters” on page 10. The defaubais/logfile , i.e. a file named lodfile in

LogDir.

You can disable all logging to the log file by setting LogFile to be the empty string.

Log file goes in /var/log, with year number
LogFile /var/log/%Y-radius.log

Disable logging to log file completely
LogFile

Technical note: If LogFile is defined in your configuration file, a <Log FILE> will be
invisibly created to handle it. See Section 6.7 on page 26.

DictionaryFile

The name of the Radius dictionary file. The dictionary file defines the names to be used
for Radius attributes and their values. Its format is described in Section 15.1 on page 97.
The file name can include special path name characters as defined in “Special characters
in file names” on page 4. The default&®/dictionary , i.e. afile called “dictio-

nary” in DbDir. A dictionary file called “dictionary” that will work with most terminal
servers is included in the Radius distribution.

Dictionary file is in the current directory
DictionaryFile ./dictionary

14 of 124

Radiator Radius Server

Configuration

6.3.11

6.3.12

6.3.13

6.3.14

6.3.15

6.3.16

6.3.17

PidFile

The name of the file wheradiusd will write its process ID (PID) at start-up.

Defaults to %L/radiusd.pid. The file name can include special path name characters as
defined in “Special characters in file names and other parameters” on page 10.

So we don’t conflict with another radiusd
PidFile tmp/radiusd?2.pid

Syslog
This parameter is now obsolete, and is replaced by the <Log SYSLOG> clause. See
Section 6.8 on page 27.

SnmpgetProg

Specifies the full path name to tsiempget program. This optional parameter is only
used if you are using Simultaneous-Use with a NasType of Livingston or any other NAS
type that uses SNMP (see Figure 2 on page 19) in one of your Client clauses. Defaults
to /usr/bin/snmpget

SnmpgetProg /usr/local/bin/snmpget

FingerProg

Specifies the full path name to an exterfiadjer program. This optional parameter is
only used if you are using Simultaneous-Use with a NasType of Portslave, Ascend,
Shiva, Computone or any other NAS type that uses finger (see Figure 2 on page 19) in
any of your Client clauses. Defaults to using an internal finger client that does not
require an external program.

FingerProg /usr/local/bin/finger

PmwhoProg

Specifies the full path name to themwhoprogram. This optional parameter is only
used if you are using Simultaneous-Use with a NasType of TotalControl or any other
NAS type that uses pmwho (see Figure 2 on page 19) in one of your Client clauses.
Defaults td/usr/local/sbin/pmwho

PmwhoProg /usr/local/bin/pmwho

LivingstonMIB

This optional parameter specifies the name of the Livingston SNMP MIB. It is only
used if you are using Simultaneous-Use with a NasType of Livingston in one of your
Client clauses. Defaults to .iso.org.dod.internet.private.enterprises.307

LivingstonOffs

Specifies the global default value of where the last S port is before the one or two ports
specified in LivingstonHole are skipped (usually 22 for US, 29 for Europe). This
optional parameter is only used if you are using Simultaneous-Use with a NasType of
Livingston in one of your Client clauses. Defaults to 29.This value can be overridden on
a per-Client basis by using LivingstonHole in a Client clause, see Section 6.4.11 on
page 22.

Radiator Radius Server 15 of 124

Configuration

6.3.18

6.3.19

6.3.20

6.3.21

LivingstonHole

Specifies the global default value of the size of the hole in the port list (usually 1 for
US, 2 for Europe) that occurs at LivingstonOffs. This optional parameter is only used if
you are using Simultaneous-Use with a NasType of Livingston in one of your Client
clauses. Defaults to 2. This value can be overridden on a per-Client basis by using Liv-
ingstonHole in a Client clause, see Section 6.4.12 on page 22.

RewriteUsername

This parameter enables you to alter the User-Name in authentication and accounting
requests. For more details, see Section 14.0 on page 96. You can also rewrite user names
on a per-Client or per-Realm basis (see Section 6.3.19 on page 16 and Section 6.4.8 on
page 21).

You can have any number of RewriteUsername parameters. The rewrites will be applied
to the user name in the same order that they appear in the configuration file. The rewrites
are applied before any per-Client or per-Realm rewrites. At Trace level 4, you can see
the result of each separate rewrite for debugging purposes.

Convert all user@realml to user@realm2, then

change any user named mikem into fred
RewriteUsername s/\(["@]+)@realm1/$1@realm2/
RewriteUsername s/"mikem@/fred@/

Convert a MSN realm/user into user@realm
RewriteUsername s/)V (*)/$2\@$1/

Translate all uppercase to lowercase
RewriteUsername tr/A-Z/a-z/

SocketQueueLength

This optional parameter allows you to alter the lengths of the radius socket queues from
their default Operating-System specific value. You may wish to set the queue lengths to
be longer than the default if your Radiator server is handling very large numbers of
requests, and is near its performance limits. You should never need to set them to shorter
than the default. SocketQueuelLength affects the length of both the authentication and
the accounting socket queues. SocketQueuelength has no effect on Win95 or NT.

Hint: You may need special privileges, or you may need to change your Operating Sys-
tem configuration to permit longer queue lengths than the default. Consult your operat-
ing system manuals for details on how to do this.

Make a long queue length
SocketQueuelLength 1000000

PreClientHook

This optional parameter allows you to define a Perl function that will be called during
packet processing. PreClientHook is called for each request before it is passed to a Cli-
ent clause. It will be called even if there is no Client defined for the request. A reference
to the current request is passed as the only argument.

The hook code is compiled by Perl when Radiator starts up. Compilation errors in your
hook code will be reported to the log file at start-up time. Runtime errors in your hook

16 of 124

Radiator Radius Server

Configuration

will also be reported to the log file when your hook executes. Multiline hooks (i.e. with
trailing backslashes (\)) are parsed by Radiator into one long line. Therefore you should
not use trailing comments in your hook.

PreClientHook can be an arbitrarily complicated Perl function, that might run external
processes, consult databases, change the contents of the current request or many othel
things.

Fake a new attribute into the request
PreClientHook sub { ${$_[0]}->add_attr(‘test-attr’, \
‘test-value’);}

6.4 <Client Xxxxxx>

The beginning of a Client clause. The clause continues until </Client> is seen on a line.
A Client clause specifies a Radius client that this server will listen to. Requests received
from any client not named in a Client clause in the configuration file will be silently
ignored. The DEFAULT client (if defined) will handle requests from clients that are not
defined elsewhere.

You must have a Client clause for every Radius client which your server is expected to
serve, or else a DEFAULT Client. In each Client clause replace the xxxxx with either the
DNS name or the IP address of the host machine where the Radius client is running.
Wildcards are not permitted. In the following example, the radius server will only
respond to requests received from either oscar.open.com.au or from IP address
203.63.154.7, and each client has a different shared secret.

<Client oscar.open.com.au>
Secret XG1gFty566

</Client>
<Client 203.63.154.7>

Secret kj1fgkj77878&
</Client>
Handle all other clients with this secret
<Client DEFAULT>

Secret xyzzy
</Client>

Each Client clause can have a number of different parameters set, as described below.

6.4.1 Secret
This defines the shared secret that will be used to decrypt Radius messages that are
received from this client. Yomustdefine a shared secret for each Client, anuligt
match the secret configured into the client Radius software. There is no default. The
secret can be any number of ASCII characters. Any ASCII character except newline is
permitted, but it might be easier if you restrict yourself to the printable characters. For a
reasonable level of security, the Secret should be at least 16 characters, and a mixture of
upper and lower case, digits and punctuation. You should not use just a single recogniz-
able word.

This better agree with the client at
oscar.open.com.au or we wont understand them!
<Client oscar.open.com.au>

Radiator Radius Server 17 of 124

Configuration

6.4.2

6.4.3

6.4.4

Secret 6660baFGKMRNs666
</Client>

DefaultRealm

This optional parameter can be used to specify a default realm to use for requests that
don't already have a realm. The realm can then be used to trigger a specific <Realm>
clause. This is useful if you operate a number of NASs for different customer groups
and where all your customers log in without specifying a realm.

Realmless logins to this NAS will be treated
as if they are for realm open.com.au
<Client accl.open.com.au>

Secret

DefaultRealm open.com.au
</Client>
<Realm open.com.au>

</Realm>

IgnoreAcctSignature

If defined, this parameter causes prevents the server from checking the “authenticator”
(sometimes called the signature) in accounting requests received from this client. This is
useful because some clients (notably early Merit Radius servers and the GRIC server
when forwarding) do not send Authenticators that conform to RFC 2139, while some
other NASs do not set the authenticator at all. By default, the server will check the
Authenticator in accounting requests. By default, it will log and ignore (i.e. not respond
to) accounting requests that do not have a correct Authenticator. Regardless of the set-
ting of this parameter, the server will always send a correctly computed Authenticator in
reply to accounting requests. If you keep seeing log messages like:

Bad authenticator in request from < client name >

and your accounting requests are not being stored, but you are authenticating OK, and
you are sure the shared secrets are correct, you might try enabling this parameter.

brian.open.com.au has a broken NAS
<Client brian.open.com.au>
Secret 6660baFGKkmMRNs666
IgnoreAcctSignature
</Client>

Dupinterval

If more than 1 Radius request from this Client with the same Radius Identifier are
received within Duplnterval seconds, the 2nd and subsequent are ignored. A value of 0
means duplicates are always accepted, which might not be very wise, except during test-
ing. Default is 2 seconds, whcih will detect and ignore duplicates due to multiple trans-
mission paths. In general you should never need to worry about or set this parameter.
Ignore it and accept the default.

brian.open.com.au is being tested
<Client brian.open.com.au>
Secret 6660baFGKMRNs666

18 of 124

Radiator Radius Server

Configuration

Duplnterval 0
</Client>

6.4.5 NasType
This optional parameter specifies the vendor type of this Client. It is required if you
want Radiator to directly query the NAS to check on simultaneous sessions. The allow-
able values for NasType are:

TABLE 2. Allowable values of NasType, and their NAS query method

NasType Method used to connect to NAS

Livingston SNMP

Portslave Finger

PortslaveLinux Finger. For use with Portslave running pn
a Linux host, understands Linux finger
format.

Cisco SNMP

Ascend Finger

AscendSNMP SNMP

Computone Finger

Shiva Finger

TotalControl pmwho

TotalControlSNMP SNMP

Bay, Bay5399SNMP, SNMP

Bay8000SNMP

Bay4000SNMP SNMP

BayFinger Finger

Tigris, TigrisNew SNMP for new version of the Tigris MIB
(i.e. firmware revision 10.1.4.14 or
greater)

TigrisOld SNMP for old versions of the Tigris MIH

NortelCVX1800 SNMP

Xyplex Finger

ignore Does not contact NAS under any circum-
stances. Always assumes that there are|no
multiple logins.

unknown The default value. Does not connect tg
the NAS under any circumstances.
Always assumes the SessionDatabase|is
correct.

You can specify the maximum number of sessions allowable for a single user with the
Simultaneous-Use check item, or for all the users in a Realm with the MaxSessions
parameter in <Realm> or <Handler> clauses. In either case, during authentication,
Radiator first checks its Session Database (see Section 6.5 on page 22 and Section 6.6

Radiator Radius Server 19 of 124

Configuration

6.4.6

6.4.7

on page 25) to see if the user’s session count is exceed. Since this count can be inaccu-
rate in the face of NAS reboots etc., Radiator can also double check the count by inter-
rogating the NAS directly (you enable this by specifying NasType in the Client clause,
see Section 6.4.5 on page 19).

If you specify “unknown” or do not specify any value at all, Radiator will never try to
contact the NAS to check the user’s sessions, and it will always assume that the sessions
it thinksare present are correct. If you specify “ignore”, Radiator will never try to con-
tact the NAS to check the users sessions, and it will always assume that there are no
multiple sessions.

Hint: If Radiator detects problems or timeouts when using finger to verify simultaneous
connections, it assumes that the user is still online (i.e. it assumes that the SessionData-
base is correct).

Radiator uses a number of global parameters to specify how to communicate with the
NAS. See SnmpgetProg, FingerProg PmwhoProg, LivingstonMIB, LivingstonOffs and
LivingstonHole.

Make Radiator ask the NAS to confirm multiple logins.
its a Total Control box
NasType TotalControl

SNMPCommunity
This optional parameter specifies the SNMP Community name to use to connect to the
NAS when NasType uses SNMP. It is ignored for any other NasType. Defaults to ‘pub-
lic’.

SNMPCommunity private

FramedGroupBaseAddress

This optional parameter is used in conjunction with the Framed-Group reply attribute or
the FramedGroup AuthBy parameter to automatically generate IP addresses for users
logging in. It is ignored unless the user has a Framed-Group reply item, or unless their
AuthBYy clause contains a FramedGroup parameter. You can have as many
FramedGroupBaseAddress items as you like.

You would only need to use this mechanism if you are using a NAS that is unable to
choose IP addresses from an address pool, or if you want a more complicated address
allocation policy than your NAS can support.

When a user logs in, Radiator can automatically choose an IP address for the user and
return it to the NAS in a Framed-IP-Address reply attribute. To make this happen, you
must specify one or more FramedGroupBaseAddress items in each Client clause, and
you must specify a Framed-Group reply item for each user for whom you want address
allocation. If the user is authenticated, Radiator will generate a Framed-IP-Address
using Framed-Group reply item and the NAS-Port in the request. The Framed-Group in
a user record selects the nth FramedGroupBaseAddress (0 based) from the Client they
are logging in to, and NAS-Port is added to the last byte (modulo 255) to generate a
Framed-IP-Address.

20 of 124

Radiator Radius Server

Configuration

In the example below, if the user logs in on the Client at port 5, and their Framed-Group
reply item is 1, they will be allocated a Framed-IP-Address of 10.0.1.6 (i.e. 10.0.1.1 + 5)

In the Radiator configuration file:

<Client ..>
This is the base address for Framed-Group = 0
FramedGroupBaseAddress 10.0.0.1
This is the base address for Framed-Group = 1
FramedGroupBaseAddress 10.0.1.1
This is the base address for Framed-Group = 2
FramedGroupBaseAddress 10.0.2.1

</Client>

In the users file for each user you want to allocate an address for:

mikem User-Password = “fred”
Framed-Group = 1,
Framed-Protocol = PPP,
etc.

Alternatively, in an AuthBy clause:

<AuthBy whatever...>
This will cause all users authorized by this clause to get
an address allocated from the block starting 10.0.1.1,
unless overridden by a user-specific Framed-Group
FramedGroup 1

</AuthBy>

6.4.8 RewriteUsername
This parameter enables you to alter the user name in all authentication and accounting
requests from this client. For more details, see Section 14.0 on page 96.

You can have any number of RewriteUsername parameters. The rewrites will be applied
to the user name in the same order that they appear in the configuration file. The rewrites
are applied after any global rewrites, but before any per-Realm rewrites. At Trace level

4, you can see the result of each separate rewrite for debugging purposes.

Convert all user@realml to user@realm2, then

change any user named mikem into fred
RewriteUsername s/\(["@]+)@realm1/$1@user.realm2/
RewriteUsername s/"mikem@/fred@/

Convert a MSN realm/user into user@realm
RewriteUsername s/ *)V(.*)/$2\@$1/

Translate all uppercase to lowercase
RewriteUsername tr/A-Z/a-z/

Radiator Radius Server 21 of 124

Configuration

6.4.9

6.4.10

6.4.11

6.4.12

6.5

IdenticalClients

This optional parameter specifies a list of other clients that have an identical setup. You
can use this parameter to avoid having to create a separate Client clauses for lots of oth-
erwise identical clients. The value is a list of client names or addresses, separated by
white space. You can have any number of IdenticalClients lines.

IdenticalClients 10.1.1.1 10.1.1.2 nas.mydomain.com
IdenticalClients 10.1.1.7 10.1.1.8 10.1.1.9
IdenticalClients 203.63.154.1 localhost

PreHandlerHook

This optional parameter allows you to define a Perl function that will be called during
packet processing. PreHandlerHook is called for each request after per-Client username
rewriting and duplicate rejection, and before it is passed to a Realm or Handler clause.
A reference to the current request is passed as the only argument.

The hook code is compiled by Perl when Radiator starts up. Compilation errors in your
hook code will be reported to the log file at start-up time. Runtime errors in your hook
will also be reported to the log file when your hook executes. Multiline hooks (i.e. with
trailing backslashes (1)) are parsed by Radiator into one long line. Therefore you should
not use trailing comments in your hook.

PreHandlerHook can be an arbitrarily complicated Perl function, that might run external
processes, consult databases, change the contents of the current request or many other
things.

Fake a new attribute into the request
PreHandlerHook sub { ${$_[0]}->add_attr(‘test-attr’, \
‘test-value’);}

LivingstonOffs

Specifies the value of where the last S port is before the one or two ports specified in
LivingstonHole are skipped (usually 22 for US, 29 for Europe). This optional parameter
is only used if you are using Simultaneous-Use with a NasType of Livingston in this
Client clause. Defaults to the global value of LivingstonOffs, see Section 6.3.17 on
page 15.

LivingstonHole

Specifies the value of the size of the hole in the port list (usually 1 for US, 2 for Europe)
that occurs at LivingstonOffs. This optional parameter is only used if you are using
Simultaneous-Use with a NasType of Livingston in this Client clause. Defaults to the
global value of LivingstonOffs, see Section 6.3.18 on page 16.

<SessionDatabase SQL>

This optional clause specifies an external SQL Session Database for radiusd. The Ses-
sion Database is used to hold information about current sessions as part of Simulta-
neous-Use limit checking. It can also be used by external utilities for querying the on-
line user population. If you don't specify a SessionDatabase clause in your configura-
tion file, the database will be kept internal to radiusd, which is faster, but can’t be used
to synchronize multiple instances of Radiator.

22 of 124

Radiator Radius Server

Configuration

6.5.1

6.5.2

If you want to enforce Simultaneous-Use limits and you are running multiple instances
of Radiator, youmustspecify an external Session Database for each Radiator, and you
mustensure that all instances of Radiator use the same Session Database. If you fail to
do this, Radiator will not be able to correctly enforce Simultaneous-Use limits, and may
allow people to log in who have already exceeded their limit.

SessionDatabase SQL has 4 SQL statements configured into it (AddQuery, Delete-
Query, ClearNasQuery and CountQuery). These statements are used to add, remove anc
count the entries in the SQL Session Database. The default statements will work with
the example RADONLINE table in the example SQL schemas in the goodies directory.

If you wish, you can use more or fewer columns in your SQL Session Database, and you
can change the names of the columns or the table. If you do use a different table schema,
you will probably have to change AddQuery, DeleteQuery, ClearNasQuery and Coun-
tQuery to match your schema.

You can configure the SQL database(s) that SessionDatabase SQL uses in the same way
as with AuthBy SQL: by defining one or more DBSource, DBUsername and DBAuth
lines. See Section 6.23 on page 51 for more details.

You can specify multiple databases by using multiple DBSource, DBUsername and
DBAuth parameters. Whenever Radiator tries to connect to a SQL Session Database,
SQL will try to connect to the first DBSource listed, using the first DBUsername and
DBAuth parameters. If that connection fails, it will try the second, third etc., until all the
databases are exhausted, and finally gives up.

AuthBy SQL is tolerant of database failures. If your database server goes down, Radia-
tor will try to reconnect to a database as described above, starting again at the first data
base you specified. Whichever database Radiator connects to, it will stay connected to it
until that database becomes unreachable, at which time it will again search for a data-
base, starting at the first again. If on the other hand, Radiator is not able to connect to
anySQL server, it will stop enforcing Simultaneous-Use limits until one of its databases
comes back on line.

Hint: You can use radwho.cgi to view the contents of your Session Database. See
Section 12.0 on page 87.

SessionDatabase DBM understands the following parameters:

Identifier

This optional parameter assigns a name to the Session Database, so it can be referred tc
in other parts of the configuration file, such as the SessionDatabase parameter in Han-
dler.

Here is a useful name for this Session Database
Identifier SDB1

DBSource
This parameter is used by Perl DBI to specify the database driver and database system
to connect to. It will usually begin witdhbi:driver_name: . There is no standard

Radiator Radius Server 23 of 124

Configuration

for the text following the driver name. You will have to consult the documentation for
your DBD driver. Some examples are given below

Connect to mSQL database called radius on localhost,

standard port

DBSource dbi:mSQL:radius

Or... Connect to the Oracle sid called users

DBSource dbi:Oracle:users

Or... Connect to mysql database called radius on localhost,
standard port

DBSource dbi:mysql:radius

6.5.3 DBUsername
For most database types, this specifies the username to log in to the database. For some
databases, this has a different meaning. For example for mSQL and mysq|, its the name
of the database to connect to.

For mSQL, its ignored

DBUsername whocares

For mysq|l, its the name of mysql user to log in as
DBUsername mikem

For Oracle, its the name of the Oracle user to
#login as

DBUsername scott

6.5.4 DBAuth
Usually used by Perl DBI to specify the password for the user specified in DBUser-
name. For some databases, this has a different meaning. For example for mSQL, its not
used at all, and can be ignored. For mysq|, it's optional, depending on how you have
configured your database.

For mSQL, its ignored

DBAuth any old rubbish

For mysq|l, its the mysqgl password for DBUsername
DBAuth fred

For Oracle, its Oracle password for DBUsername
DBAuth tiger

6.5.5 AddQuery
This SQL statement is executed whenever a new user session starts (i.e. when an
Accounting-Request Start message is received). It is expected to record the details of the
new session in the SQL database. Special formatting characters may be used (the
%({attribute} ones are probably the most useful).

It defaults to:

insert into RADONLINE (USERNAME, NASIDENTIFIER, NASPORT, \
ACCTSESSIONID, TIME_STAMP, FRAMEDADDRESS, PORTTYPE, \
SERVICETYPE) values ("%n’, '%N’, %{NAS-Port}, '%{Acct-Session-Id}’, \
%{Timestamp}, '%{Framed-IP-Address}’, '%{Port-Type}’, '%{Service-Type})

6.5.6 DeleteQuery

This SQL statement is executed whenever a user session finishes (i.e. when an Account-
ing-Request Stop message is received). It is expected to remove the details of the ses-

24 of 124 Radiator Radius Server

Configuration

6.5.7

6.5.8

6.6

sion from the SQL database. Special formatting characters may be used (the
%({attribute} ones are probably the most useful).

It defaults to:

delete from RADONLINE where USERNAME="%n’ and \
NASIDENTIFIER="%N’" and NASPORT=%{NAS-Port}

ClearNasQuery

This SQL statement is executed whenever a NAS reboot is detected. It is expected to
clear the details of all sessions on that NAS from the SQL database. Special formatting
characters may be used (the %{attribute} ones are probably the most useful).

It defaults to:

delete from RADONLINE where NASIDENTIFIER="%N’

CountQuery

This SQL statement is executed whenever a Simultaneous-Use check item or MaxSes-
sions must be checked during an Access-Request. It is expected to find and return
details of all the user sessions currently in the Session Database for the given User-
Name. For each entry, it is expected to return the NAS-Identifier, NAS-Port and Acct-
Session-Id (in that order) of each session currently in the Session Database. The
returned rows are counted, and if there are apparently too many sessions, SessionData:
base SQL will query each NAS and port to confirm if the user is still on line at that port
with that session ID.

It defaults to:

select NASIDENTIFIER, NASPORT, ACCTSESSIONID from RADONLINE \
where USERNAME="%n’

Hint: You can make SessionDatabase SQL count sessions in different ways depending
on how you want to restrict your sessions. For example, you could limit the number of
users permitted to log in to a particular realm with something like:

CountQuery select NASIDENTIFIER, NASPORT, ACCTSESSIONID from\
RADONLINE where USERNAME like '%%@%R’

If your Session Database table included the Called-Station-Id for each session, you
could limit the maximum number of users with the same Called-Station-ID with some-
thing like:

CountQuery select NASIDENTIFIER, NASPORT, ACCTSESSIONID from\
RADONLINE where CALLEDSTATIONID ='%{Called-Station-Id}

<SessionDatabase DBM>

This optional clause specifies an external DBM file Session Database for radiusd. The
Session Database is used to hold information about current sessions as part of Simulta-
neous-Use limit checking. It can also be used by external utilities for querying the on-
line user population If you don’t specify a SessionDatabase clause, the database will be

Radiator Radius Server 25 of 124

Configuration

6.6.1

6.6.2

6.7

6.7.1

kept internal to radiusd, which is faster, but can’t be used to synchronize multiple
instances of Radiator.

If you want to enforce Simultaneous-Use limits and you are running multiple instances
of Radiator, youmustspecify an external Session Database for each Radiator, and you
mustensure that all instances of Radiator use the same Session Database. If you fail to
do this, Radiator will not be able to correctly enforce Simultaneous-Use limits, and may
allow people to log in who have already exceeded their limit.

Radiator will choose the ‘best’ format of DBM file available to you, depending on
which DBM modules are installed on your machindir(t: You can force it to choose a
particular format by modifying the top of SessDBM.pm)

Hint: You can use radwho.cgi to view the contents of your Session Database. See
Section 12.0 on page 87.

SessionDatabase DBM understands the following parameters:

Identifier
This optional parameter assigns a name to the Session Database, so it can be referred to
in other parts of the configuration file.

Here is a useful name for this Session Database
Identifier SDB1

Filename

Specifies the filename that holds the Session Database. Def&8doline , The
actual file names will depend on which DBM format Perl selects for you, but will usu-
ally be something likenline.dir andonline.pag in DbDir. The file name can
include special formatting characters as described in Section 6.2 on page 10.

Session database in called online2.* in DbDir
Filename %D/online

<Log FILE>

This optional clause creates a FILE logger, which will log all messages with a priority
level of Trace or more to a file. The logging is in addition to any logging to the file
defined by Filename (see Section 6.3.9 on page 14). The log file will be opened, written
and closed for each message, which means you can rotate it at any time.

Log FILE understands the following parameters:

Filename

The name of the file that will be logged to. The file name can include special path name
characters as defined in “Special characters in file names and other parameters” on
page 8. The default is %L/lodfile, i.e. a file named logfile in LogDir.

Log file goes in /var/log, with year number
LogFile /var/log/%Y-radius.log

26 of 124

Radiator Radius Server

Configuration

6.7.2

6.8

6.8.1

6.8.2

6.9

Trace
Defines the priority level of messages to be traced. See Section 6.3.3 on page 13.

<Log SYSLOG>

This optional clause creates a SYSLOG logger, which will log all messages with a pri-
ority level of Trace or more to the syslog system. It is available on Unix systems only.
The logging is in addition to any logging to the file defined by LogFile (see

Section 6.3.9 on page 14).

Messages are logged to syslog with priority levels that depend on the severity of the
message. 5 priority levels have been defined, and they are logged to the equivalent sys-
log priority. See the Trace parameter for a description of the priority levels supported.

Log SYSLOG requires Sys::Syslog, which in turn requires syslog.ph to have been con-
structed on your system by the Perl utility h2ph. If you want to use Log SYSLOG, you
will have to run h2ph. Check “man h2ph” for details.

You must also ensure that your host’s syslog is configured to do something with ‘err’,
‘warning’, ‘notice’, ‘info and ‘debug’ priority messages from the Syslog facility you
specify, otherwise you won’t see any messages. See /etc/syslog.conf, or it moral equiva-
lent on your system.

Log SYSLOG understands the following parameters:

Facility

The name of the syslog facility that will be logged to. The default is ‘user’.
Log to the syslog facility called ‘radius’

Facility radius

Trace
Defines the priority level of messages to be traced. See Section 6.3.3 on page 13.

<Log SQL>

This optional clause creates an SQL logger, which will log all messages with a priority
level of Trace or more to an SQL database. The logging is in addition to any logging to
the file defined by LogFile (see Section 6.3.9 on page 14).

The messages will be inserted with the following SQL statement:
insert into tablename (TIME_STAMP, PRIORITY, MESSAGE)
values (time , priority ,’ message’)

You must create a table to insert into before you can use this clause. There are example
logging tables created in the example SQL files in the goodies directory of the Radiator
distribution.

Log SQL understands the following parameters:

Radiator Radius Server 27 of 124

Configuration

6.9.1 DBSource, DBUsername, DBAuth
These parameters specify how to connect to the database to use for logging. They need
to be set in a similar way to as for <AuthBy SQL>. They specify the DBD driver, data-
base and username to connect to.

Connect to mSQL with database named ‘radius’
DBSource dbi:mSQL:radius

DBUSername

DBAuth

6.9.2 Table
Defines the name of the SQL table to insert into. Defaults to ‘RADLOG'.

Insert into a table called mylog
Table mylog

6.9.3 Trace
Defines the priority level of messages to be traced. See Section 6.3.3 on page 13.

6.10 <SNMPAgent>

This optional clause enables an SNMP Agent that will allow you to fetch statistics from
Radiator using SNMP. Radiator supports all the SNMP objects described in the draft

IETF standard defined in draft-ietf-radius-servmib-04.txt. Only SNMP V1 is supported.
A copy of the draft standard is included in the doc directory of the Radiator distribution.

SNMPAgent requires SNMP_Session-0.62.tar.gz from ftp://ftp.switch.ch/software/
sources/network/snmp/perl/ to be installed first.

If you do not include this clause in your Radiator configuration file, it will not respond
to any SNMP requests.

Example, showing how to enable SNMP handling
<SNMPAgent>

Community mysnmpsecret
</SNMPAgent>

If you enable SNMPAgent, you will be able to collect server statistics using a 3rd party
SNMP package such as MRTG, Open View etc. You can also use SNMP to reset the
server.

You can test that its working properly with a command on Unix like this one, that gets
the value of radiusServident:

$ snmpget hostname public .iso.org.dod.internet.3.79.1.1.1.1

.ccitt.1 = “Radiator 2.13beta”

SNMPAgent understands the following parameters:

6.10.1 Port
This optional parameter specifies the UDP port number that the SNMP Agent is to listen
on. It defaults to 161. There should only rarely be any reason to change it. The argument

28 of 124 Radiator Radius Server

Configuration

6.10.2

6.10.3

6.11

may be either a numeric port number or an alphanumeric service name as spécified in

etc/services (or its moral equivalent on your system).
Use a non-standard port
Port 9991

BindAddress

This optional parameter specifies a single host address to listen for SNMP requests on.
It is only useful if you are running Radiator on a multi-homed host (i.e. a host that has
more than one network address). Defaults to the global value of BindAddress (usually
0.0.0.0 i.e. listen on all networks connected to the host, but see Section 6.3.6 on

page 14).

Only listen on one network, not all the ones connected
BindAddress 203.63.154.0

Community

SNMP V1 provides a weak method of authenticating SNMP requests, using the "com-
munity name”. This optional parameter allows you to specify the SNMP V1 community
name that will be honored by SNMPAgent. Any SNMP request that does not include the
correct community name will be ignored. Defaults to ‘public’. We strongly recommend
that you choose a community name and keep it secret.

Use a secret community.
Community mysnmpsecret

<Realm realmname >

The beginning of a Realm clause. The clause continues<URéblm> is seen on a

line. A Realm clause specifies a single Radius realm that this server will service. A
realm is the part of the users login name that follows the ‘@’ sign. For example if a user
logs in as “mikem@open.com.au”, then “open.com.au” is the realm. All requests from
all users with the realm named in #lRealm realmname > line will be handled in

the way specified by the rest of the Realm clause. You can configure one or more realms
into your server, possibly with a different AuthBy authentication method for each.

Therealmnamecan be either an exact realm name or it can be a Perl regular expression
(regexp) including the opening and closing slashes that will match zero or more realms.
You can also use the ‘X’ and ‘i’ modifiers. If you use a regexp, you should be very care-
ful to check that you regexp will match only those realms you mean it to. Consult your

Perl reference manual for more information on writing Perl regexps.

If you omit the realm name from the <Realm> line, the clause will match requests with
a NULL realm (i.e. where the user did not enter a realm-qualified user name, such as a
bare “fred” or “alice”).

When Radiator looks for @Realm realmname > clause to match an incoming
request, it first looks for an exact match with the Realm name. If no match is found, it
will try to do a regexp match against Realm names that look like regexps (i.e. have
slashes at each end). If still no match, it looks for a Realm called DEFAULT. If still no
match, it logs an error and ignores (i.e. does not reply to) the request (but see
Section 6.12 on page 30 for exceptions to this rule).

Radiator Radius Server 29 of 124

Configuration

6.12

The speciaDEFAULTrealm (if it is defined) will be used to handle request from users
in realms for which there is no other matching Realm clause.

Handle requests with no realm with UNIX,
from user@open.com.au with SQL
from any realm ending in .au by forwarding
and from any other realm with DBFILE
<Realm>
<AuthBy UNIX>
</AuthBy>
</Realm>
<Realm open.com.au>
<AuthBy SQL>
</AuthBy>
</Realm>
Any realm ending in .au
<Realm /*\.au/>
<AuthBy RADIUS>
</AuthBy>
</Realm>
Any realm ending in .au, .AU, .Au, .aU (ie its case
insensitive)
<Realm /.*\.au/i>
<AuthBy RADIUS>
</AuthBy>
</Realm>
Any other realm
<Realm DEFAULT>
<AuthBy DBFILE>
</AuthBy>
</Realm>

A <Realm> is a special type of <Handler>, and you can use all the same parameters that
are described in Handler (see Section 6.12 on page 30).

<Handler attribute=value,attribute=value, >

The beginning of a Handler clause. The clause continuesuhtdndler> is seen on

aline. A Handler clause causes all requests with a specific set of attributes to be handled
in the same way. You can configure one or more Handlers into your server, possibly
with a different AuthBy authentication method(s) for each.

<Handler> differs from <Realm> in that it can group together requests based on the
value ofany attribute(s) in the request, not just the user’s realm. That makes it much
more powerful, but it is not required very often. You will only need to use Handler if

you have an unusual authentication scheme that can’t be solved with Realm. Our advice
is to use Realms in preference to Handlers: they are much easier to configure and under-
stand.

30of 124

Radiator Radius Server

Configuration

In <Handlerchecklist, thechecklistexpression is a list of request attributes thast

all matchbefore this Handler will be used to handle the request. The format is exactly
the same as a list of check items in a user file: a list of attribute=value pairs, separated by
commas. See Section 13.1 on page 90 for a description of all the check items you can
use.

If you omit the expression name from the <Handler> line, the clause will rmlhtch
requests

When Radiator looks foreHandler> clause to match an incoming request, it will

look at each <Handler> clause in the order in which they appear in your configuration
file. It will continue looking until a <Handler> is found whexeerycheck item in the
expression matches the request. If any check item does not match, it will continue onto
the next Handler until all the Handlers are exhausted. If no Handlers match, the request
will be ignored.

Technical Note. Radiator uses the following algorithm to find a Realm or Handler to
handle each request:

* Look for a Realm with an exact match on the realm name
* If still no exact match, look for a matching regular expression Realm
* |If still no match, look for a <Realm DEFAULT>

» If still no match, look at each Handler in the order they appear in the configuration
file until one where all the check items match the request.

¢ If still no match, ignore (i.e. do not reply to) the request.

Mixing Handlers and Realms in the same configuration file is permissible but may lead
to hard to understand handler selections, and difficult to understand behaviour.

In the (contrived) example below, all requests with Called-Station-1d of 662543 and Ser-
vice-Type of Framed-User will be authenticated with SQL. All requests with Called-
Station-Id of 678771 and a realm of open.com.au will be handled with a DBM, and all
other requests will forwarded to another Radius server. Much more complicated authen-
tication schemes are possible.

<Handler Called-Station-1d=662543,Service-Type=Framed-User>
<AuthBy SQL>
</AuthBy>

</Handler>

<Handler Called-Station-1d=678771,Realm=open.com.au>
<AuthBy DBM>
</AuthBy>

</Handler>

<Handler>
<AuthBy RADIUS>
</AuthBy>

</Handler>

Radiator Radius Server 31 of 124

Configuration

6.12.1

6.12.2

6.12.3

RewriteUsername
This parameter enables you to alter the user name in authentication and accounting
requests before they are handled by the Realm. See Section 14.0 on page 96.

You can have any number of RewriteUsername parameters in a Realm or Handler. The
rewrites will be applied to the user name in the same order that they appear in the con-
figuration file. The rewrites are applied after any global or per-Client rewrites. At Trace
level 4, you can see the result of each separate rewrite for debugging purposes.

RewriteUsername will be ignored if there is a RewriteFunction defined for this Realm or
Handler.

Strip the realm from all requests, because our
database only has user names (no realm)
RewriteUsername s/["@]+).*/$1/

Translate all uppercase to lowercase
RewriteUsername tr/A-Z/a-z/

RewriteFunction

This optional parameter allows you to define you own special Perl function to rewrite
user names. You can define an arbitrarily complex Perl function that might call external
programs, search in databases or whatever. The username is changed to whatever is
returned by this function.

If you define a RewriteFunction for a Realm or Handler, it will be used in preference to
RewriteUsername. RewriteUsername will be ignored for that Realm or Handler.

Strip out NULSs, trailing realms, translate to

lower case and remove single quotes

RewriteFunction sub { my($a) = shift; $a =~ s/[\000]//g; $a =~
sIN[M@]+).*/$1/; $a =~ tr/[A-Z)/[a-Z]/; $a =~ s!'llg; $a; }

MaxSessions

This parameter allows you to apply a simple limit to the number of simultaneous ses-
sions a user in this Realm is permitted to have. It is most common to limit users to either
one session at a time or unlimited, but Radiator also supports other numbers.

MaxSessions works by looking at each accounting request for a realm when it arrives.
whenever a Start is seen for a user, the count of their number if current sessions is incre-
mented, and whenever a Stop is seen, it is decremented. When an access request is
received, the number of sessions current for that user is compared to MaxSessions. If
the user already has MaxSessions sessions or more, Radiator replies with an access
denial. By setting MaxSessions to 0, you can temporarily deny access to all users in the
realm.

You can control the maximum number of sessions on a per-user basis with the Simulta-
neous-Use check item (see Section 13.1.12 on page 94).

The session count for each user is stored entirely within Radiator (unless you specify a
SessionDatabase clause). This means that if you restart or reinitialise Radiator, it will

32 of 124

Radiator Radius Server

Configuration

6.12.4

6.12.5

6.12.6

lose count of the number of current sessions for each user. Radiator can use SNMP to
confirm whether a user is already logged in or not (see Section 6.4.5 on page 19).

You should note that if Radiator fails to receive an accounting Stop request, it might
result in incorrectly thinking the user is not permitted to log in when in fact they are.
You can correct this by restarting Radiator, or by sending an artificial accounting stop
for the user using the radpwitst utility (see Section 8.0 on page 74) or by configuring
Radiator to query the NAS directly (see Section 6.4.5 on page 19).

Limit all users in this realm to max of 1 session
MaxSessions 1

AcctLogFileName

The names of the files used to log Accounting-Request message in the standard radius
accounting log format. All Accounting-Request messages will be logged to the files,
regardless of their Acct-Status-Type. The log file format is described in Section 15.5 on
page 101. If no AcctLogFileName is defined, accounting messages will not be logged
for this realm. The default is no logging. The file name can include special formatting
characters as described in Section 6.2 on page 10, which means that using the %C, %c
and %R specifiers, you can maintain separate accounting log files for each Realm or
Client or a combination. The AcctLogFileName files are always opened written and
closed for each message, so you can safely rotate them at any time.

If the AuthBy module you select does no special accounting logging, you may want to
enable this parameter for the Realm. Note that logging to AcctLogFileName is in addi-
tion to any recording that a specific AuthBy module might do (such as, say, AuthBy
SQL). The username that is recorded in the log file is the rewritten user name when
RewriteUsername is enabled.

You can specify any number of AcctLogFileName parameters. Each one will result in a
separate accounting log file.

Hint: You can change the logging format with AcctLogFileFormat

Log all accounting to a single log file in LogDir
AcctLogFileName %L /details

AcctLogFileFormat

This optional parameter is used to alter the format of the accounting log file from the
standard radius format. AcctLogFileFormat is a string containing special formatting
characters. It specifies the format for each line to be printed to the accounting log file. A
newline will be automatically appended. It is most useful if you use the %{attribute}
style of formatting characters (to print the value of the attributes in the current packet.

AcctLogFileFormat %{Timestamp} %{Acct-Session-Id}\
%{User-Name}

WtmpFileName

The name of a Unix SVR4 wtmp format file to log Accounting-Request messages. All
Accounting-Request messages will be logged. If WtmpFileName is not defined, no
messages will be logged in this format. The default is no logging. The file name can
include special formatting characters as described in Section 4.2 on page 4, which

Radiator Radius Server 33 of 124

Configuration

6.12.7

6.12.8

6.12.9

6.12.10

means that using the %C, %c and %R specifiers, you can maintain separate accounting
log files for each Realm or Client or a combination. The WtmpFileName file is always
opened written and closed for each message, so you can safely rotate it at any time. Start
messages are logged as USER_PROCESS (7), all other messages are logged as
DEAD_PROCESS (8).

You may wish to use your standard Unix administration tools to process information in
the wtmp file.

PasswordLogFileName

The name of file to log all authentication attempts to. The default is no logging. The file
name can include special formatting characters as described in Section 4.2 on page 4,
which means that using the %C, %c and %R specifiers, you can maintain separate pass-
word log files for each Realm or Client or a combination.

Each login attempt that generates a password check will be logged to the file, one
attempt per line. The file format is described in Section 15.5 on page 101.

Help desk want to see all password attempts
PasswordLogFileName %L/password.log

ExcludeFromPasswordLog
For security reasons, you can exclude certain users from the passwords logged to Pass-
wordLogFileName. The value is a white space separated list of user names.

Dont log password from our sysadmin or root
ExcludeFromPasswordLog root admin ceo nocboss

AccountingHandled

Forces Radiator to acknowledge Accounting requests, even if the AuthBy modules for
the Realm would have normally ignored the request. This is useful if you don't really
want to record Accounting requests, but your NAS keeps retransmitting unless it gets an
acknowledgment.

My AuthBy SQL ignores accounting
AccountingHandled

PreAuthHook

This optional parameter allows you to define a Perl function that will be called during
packet processing. PreAuthHook is called for each request after per-Realm username
rewriting and before it is passed to any AuthBy clauses. A reference to the current
reguest is passed as the first argument, and a reference to the reply packet currently
being constructed is passed as the second argument

The hook code is compiled by Perl when Radiator starts up. Compilation errors in your
hook code will be reported to the log file at start-up time. Runtime errors in your hook
will also be reported to the log file when your hook executes. Multiline hooks (i.e. with
trailing backslashes (\)) are parsed by Radiator into one long line. Therefore you should
not use trailing comments in your hook.

34 of 124

Radiator Radius Server

Configuration

6.12.11

6.12.12

6.12.13

PreAuthHook Can be an arbitrarily complicated Perl function, that might run external
processes, consult databases, change the contents of the current request or many othel
things.

Fake a new attribute into the request
PreAuthHook sub { ${$_[0]}->add_attr(‘test-attr’, \
‘test-value’);}

PostAuthHook

This optional parameter allows you to define a Perl function that will be called during
packet processing. PostAuthHook is called for each request after it has been passed to
all the AuthBy clauses. A reference to the current request is passed as the first argument,
and a reference to the reply packet currently being constructed is passed as the second
argument. The third argument is the result of the authentication ($main::ACCEPT,
$main::REJECT etc.).

The hook code is compiled by Perl when Radiator starts up. Compilation errors in your
hook code will be reported to the log file at start-up time. Runtime errors in your hook
will also be reported to the log file when your hook executes. Multiline hooks (i.e. with
trailing backslashes (1)) are parsed by Radiator into one long line. Therefore you should
not use trailing comments in your hook.

PostAuthHook Can be an arbitrarily complicated Perl function, that might run external
processes, consult databases, change the contents of the current request or many othel
things.

Add some reply attributes to the reply message
#if itis a REJECT and there is 1 or fewer there already
PostAuthHook sub { ${$_[1]}->add_attr(‘test-attr’, \
‘test-value’) \
if ${$_[2]} == $main::REJECT \
&& ${$_[1]}->attr_count() <=1;}

AuthByPolicy
Allows you to control how multiple AuthBy clauses in this Handler or Realm will be
used. See section Section 6.18.1 on page 45.

AuthBy

This specifies that the Handler is to be authenticated with an <AuthBy> clause that is
defined elsewhere. The argument must specify the Identifier of the AuthBy clause to
use. The AuthBy Clause may be defined anywhere else: at the top level, or in a Realm or
Handler clause. You can have as many AuthBy parameters as you wish. They will be
used in the order that they appear in the configuration file (subject to AuthByPolicy) in
the same was ay <AuthBy > clauses.

Hint. This is a convenient way to reuse the same authenticator for many Realms or Han-
dlers.

<AuthBy xxxxx>
Identifier myidentifier

</AuthBy>

<Realm xxxx>

Radiator Radius Server 35 of 124

Configuration

6.12.14

6.13

This authenticates through the AuthBy defined above
AuthBy myidentifier
</Realm>

<AuthBYy xxxxxx>

This marks the beginning of an AuthBy clause in a Handler or Realm, which defines
how to authenticate and record accounting information for all the users in this Realm or
Handler. The xxxxxx is the name of a specific AuthBy module. See the following sec-
tions for how to configure specific AuthBy clauses.

<AuthBy xxxx> both defines an authentication method and specifies where it should be
used.

Note that something like

<Realm xxxx>
<AuthBy xxxxx>

<AuthBy>
</Realm>
Is identical to

<AuthBy xxxxx>
Identifier myidentifier

</AuthBy>

<Realm xxxx>
This authenticates through the AuthBy defined above
AuthBy myidentifier

</Realm>

<AuthBy xxxxxx>

This marks the beginning of an AuthBy clause, which defines how to authenticate and
record accounting information. The xxxxxx is the name of a specific AuthBy module.
See the following sections for how to configure specific AuthBy clauses. AuthBy
clauses may be defined at the top level or within a Realm or Handler clause.

Under special circumstances, you can have more than one AuthBy clause for a Realm or
Handler. This will make the Realm (or Handler) try each AuthBy method in turn until
one of them either Accepts or Rejects the request (you can change this with AuthByPol-
icy, see Section 6.12.12 on page 35). It is most useful to have an AuthBy RADIUS fol-
lowed by an AuthBy SQL, which will cause all authentication and accounting requests
to be forwarded, and also all accounting requests will be recorded in SQL. This is good
for keeping track of all requests forwarded to, say a global roaming server.

All AuthBy clauses understand the following parameters:

36 of 124

Radiator Radius Server

Configuration

6.13.1

6.13.2

6.13.3

Fork

The parameter forces the authentication module to fork(2) before handling the request.
Fork shouldonly be set if the authentication module or the way you have it configured is
“slow” i.e. takes more than a fraction of a second to process the request.

If you don’t understand what forking is for or how it can improve the performance of
your Radiator server, talk about it to someone who does before using it. Not all authen-
tication methods will benefit from forking. Fork has no effect on Win95, Win98 or NT.

Technical Note: In particular, it does not usually make sense to use Fork with AuthBy
SQL, AuthBy FILE, AuthBy LDAP or any of the other common authentication methods
provided with Radiator. Further, some SQL and LDAP client libraries are not robust
across forks. You might want to consider using Fork with AuthBy EXTERNAL or a
custom authentication module if it needs to do significant amounts of 10, or to commu-
nicate with a remote system.

This AuthBy EXTERNAL program is very slow, and does lots of 10
Fork

UseAddressHint

This optional parameter forces Radiator to honour a Framed-IP-Address in an Access-
Request request unless it is overridden by a Framed-IP-Address in the users reply items.
If you enable this, then users will get the IP Address they ask for. If there is a Framed-
IP-Address reply item for a user, that will override anything they might request.

Let users get addresses they ask for
UseAddressHint

DynamicReply

This optional parameter specifies a reply item that will be eligible for run-time variable
substitution. That means that you can use any of the % substitutions in Table 1 on
page 11 in that reply item. You can specify any number of DynamicReply lines, one for
each reply item you want to do replacements on. Any packet-specific replacement val-
ues will come from the Access-Accept message being constructed, and not from the
incoming Access-Request. That means that special characters like %n will not be
replaced by the received User-Name, because User-Name is in the request, but not the

reply.

In the following example, substitution is enabled for USR-IP-Input-Filter. When a user
authenticates, the %a in the filter will be replaced by the users IP Address, which makes
the filter an anti-spoof filter.

<AuthBy whatever>

UseAddressHint
DynamicReply USR-IP-Input-Filter
</AuthBy>

In the users file:

DEFAULT User-Password = "UNIX"
Framed-IP-Address = 255.255.255.254,
Framed-Routing = None,

Radiator Radius Server 37 of 124

Configuration

6.13.4

6.13.5

Framed-IP-Netmask = 255.255.255.255,
USR-IP-Input-Filter = "1 REJECT src-addr != %a;",
Service-Type = Framed-User

Technical Note: this parameter used to be called “Dynamic”. That name is still recog-
nized as a synonym for “DynamicReply”.

DynamicCheck

This optional parameter specifies a check item that will be eligible for run-time variable
substitution prior to authentication. That means that you can use any of the % substitu-
tions in Table 1 on page 11 in that check item. You can specify any number of Dynamic-
Check lines, one for each check item you want to do replacements on.

In the following example, substitution is enabled for the Group check item. When a user
authenticates, the %{Shiva-VPN-Group} in the check item will be replaced with the
value of the Shiva-VPN-Group attribute in the authentication request. You could use this
mechanism to verify that the user is in the Unix group corresponding to their Shiva-
VPN-Group.

<AuthBy whatever>
DynamicCheck Group
</AuthBy>

In the users file:

DEFAULT Group=%{Shiva-VPN-Group}
Framed-IP-Address = 255.255.255.254,
Framed-Routing = None,
Framed-IP-Netmask = 255.255.255.255,

Identifier

This allows you to assign a symbolic name to an AuthBy clause and its configuration.
This allows you to refer to it by name in an Auth-Type check item when authenticating a
user.

The most common use of this is to create a “System” authenticator, typically with an
<AuthBy UNIX> clause. A typical example configuration file that uses this feature
might be:

<Realm DEFAULT>
<AuthBy FILE>
</AuthBy>

</Realm>

<AuthBy UNIX>
Identifier System

</AuthBy>

You can then have something like this in your users file:

DEFAULT Auth-Type = System
Framed-IP-Netmask

38 of 124

Radiator Radius Server

Configuration

6.13.6

6.13.7

6.13.8

6.13.9

In this example, all users in all realms will match the DEFAULT user in the users file.
This will in turn check their username and password against a UNIX password file as
configured by the AuthBy UNIX clause in the configuration file. If the password checks
out, they will get the Radius attributes specified in the second and subsequent lines of
the DEFAULT user entry in the users file.

StripFromReply

Strips the named attributes from Access-Accepts before replying to the originating cli-
ent. The value is a comma separated list of attribute names. StripFromReply removes
attributes from the reply before AddToReply adds any to the reply. There is no default.
This is most useful with AuthBy RADIUS to prevent downstream Radius servers send-
ing attributes you don't like back to your NAS.

Remove dangerous attributes from the reply
StripFromReply Framed-IP-Netmask,Framed-Compression

AddToReply

Adds attributes to Access-Accepts before replying to the originating client. Value is a
list of comma separated attribute value pairs all on one line, exactly as for any reply
item. StripFromReply removes attributes from the reply before AddToReply adds any to
the reply. You can use any of the special % formats in the attribute values. There is no
default.

Although this parameter can be used in any AuthBy method, it is most useful in meth-
ods like AuthBy UNIX and AuthBy NT, which don’t have a way of specifying per-user
reply items.

Append some necessary attributes for our pops
AddToReply cisco-avpair="ip:addr_pool=mypool"

DefaultReply

This is similar to AddToReply (Section 6.13.7 on page 39) except it adds attributes to an
Access-Acceponly if there would otherwise be no reply attributes. StripFromReply

will never remove any attributes added by DefaultReply. Value is a list of comma sepa-
rated attribute value pairs all on one line, exactly as for any reply item. You can use any
of the special % formats in the attribute values. There is no default.

Although this parameter can be used in any AuthBy method, it is most useful in meth-
ods like AuthBy UNIX, AuthBy NT and AuthBy SYSTEM, which don’t have a way of
specifying per-user reply items. In other AuthBy methods you can also very easily set
up a standard set of reply items for all users, yet you can still override reply items on a
per-user basis.

If the user had no reply items set some
DefaultReply Service-Type=Framed,Framed-Protocol=PPP

FramedGroup

This optional parameter acts similarly to Framed-Group reply items, but it applies to all
Access-Requests authenticated by this AuthBy clause. If FramedGrouprisl aet
matching FramedGroupBaseAddress is set in the Client from where the request came,

Radiator Radius Server 39 of 124

Configuration

6.13.10

6.13.11

6.14

6.15

then a Framed-IP-Address reply item is automatically calculated by adding the NAS-
Port in the request to the FramedGroupBaseAddress specified by FramedGroup. See
Section 6.4.7 on page 20 for more details.

Hint: you can override the value of FramedGroup for a single user by setting a Framed-
Group reply item for the user.

Work out the users IP address from the first
FramedGroupBaseAddress specified in out client
FramedGroup 0

NoDefaultlfFound

Normally if Radiator searches for a user in the database and finds one, but the users
check items fail, Radiator will then consult the DEFAULT user entry. However, if the
NoDefaultlfFound parameter is set, Radiator willy look for a DEFAULT if there
wereno entries found in the user database for the user.

don't fall through to DEFAULT if a users check item failed
NoDefaultlfFound

DefaultSimultaneousUse

This optional parameter defines a default value for Simultaneous-Use check items that
will apply only if the user does not have their own user-specific Simultaneous-Use
check item.

Use sim-use of 2 unless there is a user-specific entry
DefaultSimultaneousUse 2

<AuthBy TEST>

The AuthBy TEST module always accepts authentication requests, and ignores (but
replies to) accounting requests. It is implementefluthTEST.pm . It is useful for

testing purposes, but you should be sure not to leave them lying around in your configu-
ration file, otherwise you might find that users are able to be authenticated when you
really didn’t want them to.

AuthBy TEST can also serve as a useful template for developing your own AuthBy
modules. See Section 16.0 on page 103.

AuthBy TEST does not use any parameters, but it will log to the log file the value of any
parameters that you set.

<AuthBy FILE>

AuthBy FILE authenticates users from a user database stored in a flat file. It ignores (but
replies to) accounting requests. It is implementefluthFILE.pm . It understands
standard Livingston user files as described in Section 15.2 on page 100.

For performance reasons, AuthBy FILE opens and reads the user database at start-up,
reinitialisation and whenever the file’'s modification time changes, (i.e. the database is
cached within Radiator). Since the user database is cached in memory, large databases
can require large amounts of memory. If you set the Nocache parameter, the users file

40 of 124

Radiator Radius Server

Configuration

6.15.1

6.15.2

6.15.3

will be reread for every authentication, and will not be cached internally (this can be
slow if you have a large database, and should rarely be necessary).

AuthBy FILE supports &locache parameter that causes the user database to not be
cached, and forces the file to be reread for every authentication. It will do a linear search
for the user. You should be very careful about using this because it could be very slow
for more than 1000 users or so. Also, authentication speed will depend on the user’s
position in the file, and will be faster for users near the beginning of the file. If you need
Nocache in a production setting, you should consider DBFILE instead.

When attempting to authenticate a user, AuthBy FILE will first compare all the check
items associated with the user. It understands and handles check items as described in
Section 13.1 on page 90.

If all the check items agree with the attributes in the Access-Request message, AuthBy
FILE will reply with an Access-Accept message containing all the attributes given as
reply attributes in the user database. Some reply attributes are given special handling as
described in Section 13.2 on page 95. If the user does not appear in the database, or if
any check attribute does not match, an Access-Reject message is sent to the client.

AuthBy FILE understands the following parameters as well as those described in
Section 6.13 on page 36:

Filename

Specifies the filename that holds the user database. Defaél/tisers , i.e. a file
named users in DbDir. The file name can include special formatting characters as
described in Section 6.2 on page 10.

user database in called rad_users in DbDir
Filename %D/rad_users

Nocache

Disables caching of the user database, and forces Filename to be reread for every
Authentication. If not set, AuthBy FILE will only reread the user database when the
files modification time changes. Don't use this parameter unless you have to, because it
can be very slow for any more than 1000 users or so. If you need think you need
Nocache , you should consider DBFILE instead.

Don'’t cache so we can do some simple testing
without restarting the server all the time
Nocache

AcceptlfMissing

Normally, if a user is not present in the database file, they will always be rejected. If this
optional parameter is set, and a useroisin the database file they will mcondition-

ally acceptedIf they are in the database file, they will be accepted if and only if their
check items pass in the normal way.

This option is usually only useful in conjunction with a following AuthBy that will actu-
ally check all passwords. It can therefore be used to impose additional checks on a sub-
set of your user population.

Radiator Radius Server 41 of 124

Configuration

6.16

6.16.1

Technical Note: it won't automatically accept DEFAULT users.

Apply some extra checks for those users in the users file,
then authenticate them with PLATYPUS
<Realm xxx>
AuthByPolicy ContinueWhileAccept
<AuthBy FILE>
AcceptlfMissing
Filename %D/users
</AuthBy>
<AuthBy PLATYPUS>
whatever
</AuthBy>
</Realm>

<AuthBy DBFILE>

AuthBy DBFILE authenticates users from a user database stored in a DBM file in the
standard Merit DBM format. It is implementedAnathDBFILE.pm . It does not log

(but does reply to) accounting requests. The file format is described in Section 15.3 on
page 101. DBM files can be built from flat file user databases withuitdelbm util-

ity (see Section 9.0 on page 79).

AuthBy DBFILE opens and reads the user database for every authentication. This
means that if you change the user database DBM file, it will have an immediate effect.
The DBM file is not locked when it is accessed.

When attempting to authenticate a user, AuthBy DBFILE will first compare all the
check items associated with the user in the same was as “<AuthBy FILE>" on page 40.
If all those match the attributes in the Access-Request message, AuthBy DBFILE wiill
reply with an Access-Accept message containing all the attributes given as reply
attributes in the user database. If the user does not appear in the database, or if any
check attribute does not match, an Access-Reject message is sent to the client.

Radiator will choose the ‘best’ format of DBM file available to you, depending on
which DBM modules are installed on your machindir(t: You can force it to choose a
particular format by modifying the top of AuthDBFILE.pm and builddbm)

AuthBy DBFILE understands the following parameters as well as those described in
Section 6.13 on page 36:

Filename

Specifies the filename that holds the user database. Defdfitisers , i.e. files
namedusers.dir andusers.pag in DbDir. The file name can include special for-
matting characters as described in Section 6.2 on page 10. Depending on the actual
DBM module that Perl chooses, the database files may have other extensions.

user database in called rad_users in DbDir
Filename %D/rad_users

42 of 124

Radiator Radius Server

Configuration

6.16.2

6.17

6.17.1

AcceptlfMissing

Normally, if a user is not present in the database file, they will always be rejected. If this
optional parameter is set, and a user is not in the database file theyumitidralition-

ally acceptedIf they are in the database file, they will be accepted if and only if their
check items pass in the normal way.

This option is usually only useful in conjunction with a following AuthBy that will actu-
ally check all passwords. It can therefore be used to impose additional checks on a sub-
set of your user population.

Technical Note: it won't automatically accept DEFAULT users.

Apply some extra checks for those users in the users file,
then authenticate them with PLATYPUS
<Realm xxx>
AuthByPolicy ContinueAlways
<AuthBy DBFILE>
AcceptlfMissing
Filename %D/users
</AuthBy>
<AuthBy PLATYPUS>
whatever
</AuthBy>
</Realm>

<AuthBy CDB>

AuthBy CDB authenticates users from a user database stored in a CDB database file.
CDB is a fast, reliable, lightweight package for creating and reading constant databases.
More details about CDB can be found at ftp://koobera.math.uic.edu/www/cdb.html. It is
implemented irAuthCDB.pm , which was contributed by Pedro Melo (melo@ip.pt). It
does not log (but does reply to) accounting requests.

AuthBy CDB opens and reads the user database for every authentication. This means
that if you change the user database CDB file, it will have an immediate effect. The
CDB file is not locked when it is accessed.

When attempting to authenticate a user, AuthBy CDB will first compare all the check
items associated with the user in the same was as “<AuthBy FILE>" on page 40. If all
those match the attributes in the Access-Request message, AuthBy DBFILE will reply
with an Access-Accept message containing all the attributes given as reply attributes in
the user database. If the user does not appear in the database, or if any check attribute
does not match, an Access-Reject message is sent to the client.

AuthBy CDB understands the following parameters as well as those described in
Section 6.13 on page 36:

Filename

Specifies the filename that holds the user database. Deféfiiy/tisers.cdb . The
file name can include special formatting characters as described in Section 6.2 on
page 10.

Radiator Radius Server 43 of 124

Configuration

user database in called rad_users.cdb in DbDir
Filename %D/rad_users.cdb

6.17.2 AcceptlfMissing
Normally, if a user is not present in the database file, they will always be rejected. If this
optional parameter is set, and a user is not in the database file theyumitldrelition-
ally acceptedIf they are in the database file, they will be accepted if and only if their
check items pass in the normal way.

This option is usually only useful in conjunction with a following AuthBy that will actu-
ally check all passwords. It can therefore be used to impose additional checks on a sub-
set of your user population.

Technical Note: it won't automatically accept DEFAULT users.

Apply some extra checks for those users in the users file,
then authenticate them with PLATYPUS
<Realm xxx>
AuthByPolicy ContinueAlways
<AuthBy CDB>
AcceptlfMissing
Filename %D/users.cdb
</AuthBy>
<AuthBy PLATYPUS>
whatever
</AuthBy>
</Realm>

6.18 <AuthBy GROUP>

AuthBy GROUP allows you to conveniently define and group multiple AuthBy clauses.
Itis implemented iMuthGROUP.pm This is most useful where you need to be able to
have multiple sets of authentication clauses, perhaps with different AuthByPolicy set-
tings for each group. You can use an AuthBy GROUP (containing any number of
AuthBY clauses) anywhere that a single AuthBy clause is permitted. AuthBy GROUP
can be nested to any depth.

AuthBy GROUP will try each AuthBy method in turn until one of them either Accepts
or Rejects the request (you can change this with AuthByPolicy, see Section 6.12.12 on
page 35).

<AuthBy GROUP>
AuthByPolicy ContinueUntilReject
<AuthBy SQL>
</AuthBy>
<AuthBy DBM>
</AuthBy>
<AuthBy GROUP>
AuthByPolicy ContinueUntilAccept

RewriteUsername s/*(.+)$/cyb-$1/
<AuthBy FILE>

44 of 124 Radiator Radius Server

Configuration

6.18.1

</AuthBy>

<AuthBy FILE>

</AuthBy>
<AuthBy>

AuthBy GROUP understands the following parameters as well as those described in
Section 6.13 on page 36.

AuthByPolicy

This parameter allows you to control the behaviour of multiple AuthBy clauses inside
this AuthBy GROUP. In patrticular, it allows you to specify under what conditions Radi-
ator will try the next AuthBy clause. If you only have one AuthBYy clause, AuthByPolicy
is not relevant and is ignored.

Recall that for a single Realm, Handler or AuthBy GROUP, you can specify more than
one AuthBYy clause. The normal behaviour of Radiator is to try to authenticate with the
first one. If that authentication method either Accepts or Rejects the request, then Radi-
ator will immediately send a reply to the NAS. If on the other hand the AuthBy Ignores
the request, then the next one will be tried. That is the normal and default behaviour, but
with AuthByPolicy, you can change that. The permissible values of AuthByPolicy are:
e ContinueWhilelgnore

This is the default. Continue trying to authenticate until either Accept or Reject
* ContinueUntillgnore

Continue trying to authenticate until Ignore
e ContinueWhileAccept

Continue trying to authenticate as long as it is Accepted
¢ ContinueUntilAccept

Continue trying to authenticate until it is Accepted
¢ ContinueWhileReject

Continue trying to authenticate as long as it is Rejected
¢ ContinueUntilReject

Continue trying to authenticate until it is Rejected
e anything else

Always do every authentication method.

Authenticate with SQL, but if they are rejected
fall back to a flat file

AuthByPolicy ContinueWhileReject

<AuthBy SQL>

</AuthBy>
<AuthBy FILE>

</AuthBy>

Radiator Radius Server 45 of 124

Configuration

6.18.2

6.19

6.19.1

You should note that you can only have one AuthByPolicy parameter, and it applies to
all the AuthBys. You cant change it between one AuthBy clause and another.

RewriteUsername

This parameter enables you to alter the user name in authentication and accounting
requests before they are passed to any of the AuthBy clauses in this group. See
Section 14.0 on page 96.

You can have any number of RewriteUsername parameters in a group. The rewrites will
be applied to the user name in the same order that they appear in the configuration file.
At Trace level 4, you can see the result of each separate rewrite for debugging purposes.

Strip the realm from all requests, because our
database only has user names (no realm)
RewriteUsername s/["@]+).*/$1/

Translate all uppercase to lowercase
RewriteUsername tr/A-Z/a-z/

<AuthBy IPASS>

AuthBY IPASS handles authentication and accounting by sending requests to the iPASS
(TM) network. The iPASS network is then responsible for doing the authentication and
accounting (possibly by asking a remote Radius server) and then replying. AuthBy
IPASS is implemented in AuthlPASS.pm.

AuthBYy IPASS requires that you install and configure the iPASS Roam Server software
andthe Open System Consultants Ipass Perl module first. To get the iPASS Roam
Server software, you must contact iPASS (http://www.ipass.com). To get the Open Sys-
tem Consultants Ipass Perl module, contact Open System Consultants (http:/
www.open.com.au). There are details about installing and configuring both in the Ipass
Perl module documentation.

For more information about configuring and interoperating with iPASS, see
Section 19.0, “Interoperation with iPASS Roaming,” on page 111.

You do not need AuthBy IPASS to handle requestsived fronthe iPASS network.
These can be handled by your normal local Realm and AuthBy modules.

AuthBYy IPASS understands the following parameters:

Debug

Debug causes the operation of the iPASS libraries to be traced. The output is usually in
lusrlipass/logs/iprd.trace unless you change it with the Trace parameter.
Optional.

Trace operation of the iPASS library
Debug

46 of 124

Radiator Radius Server

Configuration

6.19.2

6.19.3

6.19.4

6.20

Config
Sets the location of the iPASS configuration file. Defaultasoipass/
ipass.conf . You can use the special filename formats. Optional.

Config /usr/locall/ipass/ipass.conf

Trace
Sets the location of the iPASS trace file. Defaultsiso/ipass/logs/
iprd.trace . You can use the special filename formats. Optional.

Trace /usr/locallipass/logs/iprd.trace

Home
Sets the location of the iPASS installation directory for locating SSL certificate and key
files. Defaults tdusr/ipass . You can use the special filename formats.

Home /usr/locallipass

<AuthBy UNIX>

AuthBy UNIX authenticates users from a user database stored in a standard Unix pass-
word file or similar format. It is implemented AuthUNIX.pm . It does not log (but

does reply to) accounting requests. The file format is described in Section 15.4 on

page 101. Since Unix password files only have encrypted passwords, AuthBy UNIX can
notwork with CHAP authentication.

For performance reasons, AuthBy UNIX opens and reads the password and group files
at start-up, reinitialisation and whenever the file modification times change, (i.e. they are
cached within Radiator). Since these files are cached in memory, large password files
can require large amounts of memory. If you set the Nocache parameter, the files will be
reread for every authentication, and will not be cached internally (this can be slow if you
have a large password or group files, and should rarely be necessary).

It is not necessary to be running on a Unix host in order to use AuthBy UNIX. It will
work equally well on Windows and NT, but you are probably less likely to need it there.

By using the Match parameter you can also specify other file formats if you need to.

When attempting to authenticate a user, AuthBy UNIX will encrypt the password from
the user and compare it to the one in the password file. If the encrypted passwords
match, AuthBy UNIX will reply with an Access-Accept message. If the user does not
appear in the password file, an Access-Reject message is sent to the client. AuthBy
UNIX caches the password file and group file internally, and rereads the files when the
modification time changes. If the Nocache parameter is set the password and group files
will be reread foeveryauthentication.

Itis important to note that on its own, AuthBy UNIX does not implement check or reply
items, and therefore can only be used for “Authenticate only” applications. However,
you can use it in conjunction with another AuthBy module that does use check and reply
items: see the Auth-Type check item in Section 13.0 on page 89. If you do this, you can

Radiator Radius Server 47 of 124

Configuration

6.20.1

6.20.2

6.20.3

6.20.4

also use the Group check item, which will check whether the user is a member of a
group defined in the GroupFilename file.

Hint: You can use AddToReply (see Section 6.13.7 on page 39) to easily add standard
reply items to all users authenticated by <AuthBy UNIX>.

AuthBy UNIX understands the following parameters as well as those described in
Section 6.13 on page 36:

Filename
Specifies the filename of the password file. Defaultsttdpasswd . The file name
can include special formatting characters as described in Section 6.2 on page 10.

Hint: On systems with shadow password files, such as Solaris, Filename can name the
shadow file. In order to support this, Radiator must have permission to read the shadow
file (this usually means it must run as root).

password file is in /usr/local/etc/local_passwd
Filename /usr/local/etc/local_passwd

Match

This parameter allows you to use flat files with different formats to the standard Unix
password format. Match is a regular expression that is expected to match and extract the
username, password and (optional) primary group ID fields from each line in the pass-
word file. The default extracts the first two colon separated fields as username and pass-
word, followed by a UID, followed by an (optional) primary group ID (i.e. standard

Unix password file format).

fields are separated by vertical bar |
Match ~([TN T

Hint. The default Match expression is:
Match A1) 2T 2((]%)

GroupFilename

Specifies the name of the group file. The group file is in standard Unix group file format.
Used to check “Group=" check items when authentication is cascaded from another
module. Defaults téetc/group.

group file is in /usr/local/etc/local_group
GroupFilename /usr/local/etc/local_group

Nocache

Disables caching of the password and group files, and forces them to be reread for every
Authentication. If not set, AuthBy UNIX will only reread the files when their modifica-
tion time changes. Don't use this parameter unless you have to, because it can be very
slow for any more than 1000 users or so.

Don't cache so we can do some simple testing
without restarting the server all the time
Nocache

48 of 124

Radiator Radius Server

Configuration

6.21

6.21.1

<AuthBy EXTERNAL>

AuthBy EXTERNAL passes all requests to an eternal program, which is responsible for
determining how to handle the request. It is implementddithEXTERNAL.pm.

When the external command is run, all the attributes in the request will be formatted and
passed to its standard input (stdin), one per line, in the format:

<tab>Attribute-Name = attribute_value

Each line output by the command on stdout is interpreted as a list of comma separated
attribute-value pairs in the format:

Attribute-Name = attribute_value

and are returned in the reply message (if any). Any output lines that can’t be interpreted
in that form are put in a Reply-Message attribute and returned in the reply message (if
any). (This last behaviour is for backwards compatibility only and will not be supported
indefinitely).

The exit status of the external command determines what type of reply is to be sent in
response to the request:

* 0 Means reply with an acceptance. For Access-Requests, an Access-Accept will be
sent. For Accounting -Requests, an Accounting-Response will be sent

* 1 Means reply with a rejection. For Access-Requests, an Access-Reject is sent. For
Accounting -Requests, no response is sent.

e 2 Means don’'t send any reply. This will also make the Realm fall through to the next
AuthBy module if you specified more than one for this Realm (but see also AuthBy-
Policy).

* 3 Means reply with an Access-Challenge for Access-Request. For Accounting -
Requests, no response is sent.

* Any other value. No reply is sent, and no further action is taken.

AuthBy EXTERNAL will wait for the external process to complete before handling
more requests, so you should use this carefully, and avoid using long-running com-
mands. If you can’t avoid long-running EXTERNAL commands, you can use the Fork
parameter to force AuthBy EXTERNAL to fork before calling the external command.
This may improve performance.

NOTE: AuthBy EXTERNAL is not available on Windown 98. It works fine on NT and
Unix.

AuthBy EXTERNAL understands the following parameters as well as those described
in Section 6.13 on page 36:

Command

Specifies the command to run. The command can include special formatting characters
as described in Section 6.2 on page 10. There is no default, and a Command must be
specified. See above for details of how stdin, stdout and exit status are interpreted.

Radiator Radius Server 49 of 124

Configuration

6.21.2

6.22

6.22.1

Interface to an external system
Command /usr/local/bin/doReq %T

DecryptPassword

This optional parameter makes AuthBy EXTERNAL decrypt the User-Password
attribute before passing it to the external program. If you don't specify this, User-Pass-
word will be passed exactly as received in the request (i.e. encrypted by MD5 according
to the Radius standard).

This is not able to decrypt CHAP passwords.

Pass plaintext passwords to the external program
DecryptPassword

<AuthBy NT>

AuthBy NT authenticates users with the NT User Manager or Primary Domain Control-
ler. It is implemented iluthNT.pm . It does not log (but does reply to) accounting
requests. AuthBy NT camot work with CHAP authentication.

When running on NT, AuthBy NT honours the NT “Account Disabled” flag. This means
that if you check the “Account Disabled” checkbox for a user in the NT User Manager,
they won’t be able to authenticate.

AuthBy NT will only work on NT or Unix hosts. It will not work on Windows 95. On
Unix, it requires the Authen::Smb package (Authen-Smb-0.3 or better) available from
CPAN.

It is important to note that on its own, AuthBy NT does not implement check or reply
items, and therefore can only be used for “Authenticate only” applications. However,
you can use it in conjunction with another AuthBy module that does use check and reply
items: see the Auth-Type check item in Section 13.0 on page 89. If you do this, you can
also use the Group check item, which will check whether the user is a member of a Glo-
bal Group on the Domain Controller (not available on Unix). It does not work with
Local groups.

Note also that with Windows NT, user names are not case sensitive, so the user names
mikem, Mikem and MIKEM are all the same as far as AuthBy NT is concerned.

AuthBy NT understands the following parameters as well as those described in
Section 6.13 on page 36:

Domain

Specifies the name of the NT user domain that is to be checked for the user name and
password (this is not necessarily the same as a DNS domain). The Domain Controller
for the Domain you specify is consulted for account details, passwords and Group mem-
bership. The default for Domain is undefined, which means (on NT) to check passwords
for the default domain for the host where Radiator is running. When running Radiator
on Unix, youmustspecify the Domain.

50 of 124

Radiator Radius Server

Configuration

6.22.2

6.23

Look in a special domain for passwords & groups
Domain admin

DomainController

This optional parameter allows you to specify the name of your Domain Controller. If
you don't specify DomainController when running Radiator on NT, Radiator will
attempt to determine the name of your Domain Controller by polling the network. You
would not normally need to set this when running Radiator on NT.

You mustset this to the hostame(not the IP address) of the Primary Domain Control-
ler when running on Unix. On Unix, you must also be sure that there is an entry for the
DomainController name in DNS. You may need to add an entry to /etc/hosts.

This must be a DNS or host name, _not_ an IP address
DomainController hostname

<AuthBy SQL>

AuthBy SQL authenticates users from an SQL database, and stores accounting records
to an SQL database. It is implementedNathSQL.pm . AuthBy SQL is very powerful

and configurable, and has many parameters in order to customize its behaviour, so
please bear with us. You will need to have some familiarity with SQL and relational
databases in order to configure and use AuthBy SQL.

AuthBy SQL uses the Perl DBI/DBD interface to connect to your database. You can
therefore use AuthBy SQL with a large number of commercial, shareware and free SQL
database systems. In order to use SQL, you will need to install your database software,
install the matching Perl DBD module, and install the Perl DBI module before AuthBy
SQL will work. This may seem a lot of work, but it is worth it for the scalability and
flexibility it can give you. Don't be put off by the fact that large SQL databases cost a lot
of money: there are a number of suitable SQL databases that can be bought for a few
hundred dollars or less, and in some cases for free.

When AuthBy SQL receives an Access-Request message, it tries to find a password and
check and reply items for the user in a database table (you can change this behaviour
with the AuthColumnDef parameter). Radiator constructs an SQL select statement from
the AuthSelect parameter. By changing AuthSelect, you can control the table it looks in,
and the names of the columns for the password, check and reply columns. If a user is
found, all the check items (if any) are compared with the attributes in the request,
including Expiration in the format Dec 08 1998 .

If all the check items are satisfied by the attributes in the request, AuthBy SQL will
reply with an Access-Accept message containing all the attributes in the reply items (if
any). If the user does not appear in the database, or if any check attribute does not
match, an Access-Reject message is sent to the client.

If your AuthSelect statement does not generate a simple password, check items, reply
items result, you can tell Radiator how to interpret the columns in the result with the
AuthColumnDef parameter. If you don't specify any AuthColumnDef parameters, Radi-
ator will assume that AuthSelect returns password, check items, reply items in that
order.

Radiator Radius Server 51 of 124

Configuration

6.23.1

When AuthBy SQL receives an Accounting-Request message, it can store any number
of the attributes from the request in an SQL table. You can control the table it stores in,
and the names of the columns where the attributes are stored, and the attribute that is
stored there. To enable SQL accounting you must define Accountingdiathjeu must

define at least one AcctColumnDef. If you don't do both of these AuthBy SQL will
acknowledge Accounting-Request message but will not store them anywhere. The
examplegoodies/sql.cfg in the Radiator distribution shows a typical setup that

will work with the table schemas in tigeodies directory.

Some example scripts for constructing database tables for various RDBMSs can be
found in the goodies directory in the Radiator distribution. You should regard these as a
starting point for constructing large scalable user and accounting databases.

The AuthBy SQL parameters DBSource, DBUsername and DBAuth are passed to DBI
something like this:

DBI->connect(DBSource, DBUsername, DBAuth)

DBSource should be a “new-style” database specification somethirdblikieiv-
ername:... , but exact meaning of these variables depends on the Perl DBD driver
you wish to use. See Section 21.0 on page 115 for more details and examples on the
syntax of DBSource, DBUsername and DBAuth for different database vendors.

You can specify multiple databases by using multiple DBSource, DBUsername and
DBAuth parameters. Whenever Radiator tries to connect to a database, SQL will try to
connect to the first DBSource listed, using the first DBUsername and DBAuth parame-
ters. If that connection fails, it will try the second, third etc., until all the databases are
exhausted, and finally gives up without replying to the NAS. This gives your NAS the
opportunity to fall back to another Radius server if all your SQL databases are down.

AuthBy SQL is tolerant of database failures. If your database server goes down, Radia-
tor will try to reconnect to a database as described above, starting again at the first data-
base you specified. Whichever database Radiator connects to, it will stay connected to it
until that database becomes unreachable, at which time it will again search for a data-
base, starting at the first again. If, on the other hand Radiator is not able to connect to
anySQL server, it will return an IGNORE, which will cause Radiator to ignore (i.e. not
acknowledge) the request. This will cause most NASs to fall back to a secondary Radius
server.

AuthBy SQL understands the following parameters as well as those described in
Section 6.13 on page 36:

DBSource
This parameter is used by Perl DBI to specify the database driver and database system
to connect to. It will usually begin witdhbi:driver_name: . There is no standard

for the text following the driver name. You will have to consult the details for your DBD
driver. Some examples are given below

Connect to mSQL database called radius on localhost, standard
port
DBSource dbi:mSQL:radius

52 of 124

Radiator Radius Server

Configuration

6.23.2

6.23.3

6.23.4

Or... Connect to the Oracle sid called users

DBSource dbi:Oracle:users

Or... Connect to mysql database called radius on localhost,
standard port

DBSource dbi:mysql:radius

DBUsername

For most database types, this specifies the username to log in to the database. For som
databases, this has a different meaning. For example, for mSQL its the name of the data-
base to connect to.

For mSQL, its ignored

DBUsername ignored

For Oracle, its the name of the Oracle user to
#login as

DBUsername scott

DBAuth

Usually used by Perl DBI to specify the password for the user specified in DBUser-
name. For some database, this has a different meaning. For example for mSQL and
mysq|, its not used at all, and can be ignored.

For mSQL, its ignored

DBAuth any old rubbish

For Oracle, its Oracle password for DBUsername
DBAuth tiger

AuthSelect

This is an SQL select statement that will be used to find and fetch the password and pos-
sibly check items and reply items for the user who is attempting to log in. You can use
the special macros such as %n and others to specify the username to select. The first col-
umn returned is expected to be the password; the second is the check items (if any) and
the third is the reply items (if any) (you can change this expectation with the AuthCol-
umnDef parameter). Defaults teelect PASSWORD from SUBSCRIBERS

where USERNAME="%n", which does not return any check or reply items. You can
make arbitrarily complicated SQL statements so that you will only authenticate users

for example whose account status is OK or who have not exceeded their download limit
etc. See Section 13.0 on page 89 for information on how check items and reply items
are used. If the password (or encrypted password) column for a user is NULL in the
database, theany password will be accepted for that user.

The password column may be in any of the formats described in Section 13.1.1 on
page 90.

If AuthSelect is defined as an empty string, SQL will not attempt to authenticate at all.

Check user status is current. No reply items in DB

Note: The entire statement must be on one line

AuthSelect select PW, CHECK from USERS where\
NAME="%n’'and STATUS =1

Radiator Radius Server 53 of 124

Configuration

6.23.5

AuthColumnDef

This optional parameter allows you to change the way Radiator interprets the result of
the AuthSelect statement. If you don't specify any AuthColumnDef parameters, Radia-
tor will assume that the first column returned is the password; the second is the check
items (if any) and the third is the reply items (if any). If you specify any AuthColumn-
Def parameters, Radiator will use the column definitions you provide.

You can specify any number of AuthColumnDef parameters, one for each interesting
field returned by AuthSelect. The general format is:

AuthColumnDef n, attributename, type
¢ nis the index of the field in the result of AuthSelect. 0 is the first field.

* attributename is the name of the attribute to be checked or replied. The value of the
attribute is in the nth field of the result. The special attributename ‘GENERIC’ indi-
cates that it is a list of comma separated attribute=value pairs.

* type indicates whether it is a check or reply item.
A few examples are in order:
Example 1

The standard default AuthSelect statement:
AuthSelect select PASSWORD from SUBSCRIBERS \
where USERNAME="%n’
returns a single plaintext password check item. The result could be interpreted with:

AuthColumnDef 0, User-Password, check
Example 2

A more complicated AuthSelect statement:

AuthSelect select PASSWORD, CHECKATTR, REPLYATTR\
from SUBSCRIBERS \
where USERNAME="%n’

returns 3 fields in the result. The first is a plaintext password, the second is a string of
check items like ‘Service-Type=Framed-User, Expiration="Feb 2 1999", and the third
field is a string of reply items like ‘Framed-Protocol=PPP,Framed-IP-Netmask =
255.255.255.0,...." . The result could be interpreted with:

AuthColumnDef 0, User-Password, check
AuthColumnDef 1, GENERIC, check
AuthColumnDef 2, GENERIC, reply

Hint: this has the same effect as the default rule that Radiator applies if no AuthCol-
umnDef parameters are specified at all.

Hint: if your PASSWORD column contains a Unix encrypted password and you are
using AuthColumnDef, you will need to set it like this:

54 of 124

Radiator Radius Server

Configuration

6.23.6

6.23.7

6.23.8

AuthColumnDef 0, Encrypted-Password, check
Example 3

This AuthSelect statement:

AuthSelect select SERVICE, PASSWORD, MAXTIME
from SUBSCRIBERS \
where USERNAME="%n’

returns 4 fields in the result. The first is a Service-Type to check, the next is a plaintext
password and the last is the number of seconds to send back in Session-Timeout. The
result could be interpreted with:

AuthColumnDef 0, Service-Type, check
AuthColumnDef 1, User-Password, check
AuthColumnDef 2, Session-Timeout, reply

AccountingTable

This is the name of the table that will be used to store accounting records. Defaults to
“ACCOUNTING?". If AccountingTable is defined to be an empty string, all accounting
requests will be accepted and acknowledged, but no accounting data will be stored. You
must also define at least one AcctColumnDef before accounting data will be stored.

The AccountingTable table name can contain special formatting characters: table names
based on the current year and/or month might be useful, so you can rotate your account-
ing tables.

store accounting records in RADUSAGEyyyymm table
AccountingTable RADUSAGE%Y%m

EncryptedPassword

This parameter should be set if and only if your AuthSelect statement will return a Unix
encrypted password, and you are not using AuthColumnDef. Encrypted passwords can-
not be used with CHAP authentication. If the encrypted password column for a user is
NULL in the database, theanypassword will be accepted for that user. If the encrypted
password column for a user is set to the empty string (as opposed to NULL)pthen
password will be accepted for that user.

Hint: This parameter ignored if you have defined your own AuthSelect column defini-
tions with AuthColumnDef.

unix Encrypted password are in CRYPTPW
AuthSelect select CRYPTPW from USERS where N = ‘$n’
EncryptedPassword

AccountingStartsOnly

If this parameter is defined, it forces AuthBy SQL to only log Accounting Start requests

to the database. All other Accounting requests are accepted and acknowledged, but are
not stored in the SQL database.

Hint: It does not make sense to set AccountingStarts@ryAccountingStopsOnly.

Radiator Radius Server 55 of 124

Configuration

6.23.9

6.23.10

AccountingStopsOnly

If this parameter is defined, it forces AuthBy SQL to only log Accounting Stop requests

to the database. All other Accounting requests are accepted and acknowledged, but are
not stored in the SQL database.

You may want to use this parameter if your accounting system does not use or need
Accounting Start to do its billing.

We only want Stops
AccountingStopsOnly

Hint: It does not make sense to set AccountingStarts@myAccountingStopsOnly.

AcctColumnDef

AcctColumnDef is used to define which attributes in accounting requests are to be
inserted into AccountingTable, and it also specifies which column they are to be inserted
into, and optionally the data type of that column. The general form is

AcctColumnDef Column,Attribute[, Type][,Format]

Columnis the name of the SQL column where the data will be insékteibuteis the
name of the Radius attribute to store théigpeis an optional data type specifier, which
specifies the data type of the SQL coluffarmatis an optional sprintf-style format
string that will be used to format the value.

The following types are recognized:

* integer

The insertion will be done as an integer data type. Radius attributes that have
VALUE names will be inserted as their integer Radius value.

* integer-date
The attribute value will be converted from Unix seconds to an SQL date in the for-
mat ‘Sep 3, 1995 13:37'. This is suitable for inserting the Timestamp attribute as an

SQL date type. It is compatible with Microsoft SQL and Sybase datetime columns.
If it is not suitable for your database, consider using formatted-date instead.

¢ formatted-date

The attribute will be converted by Date::Format according to the format string. You
must install the Perl TimeDate package from CPAN for this to work. It is most useful
for SQL databases with unusual date formats, like Oracle.

e -anything else-

Any other type string will cause the attribute to be inserted literally as a string.
Quotes and other control characters will be automatically escaped to suit your data-
base.

You can use formatted-date to create date formats to suit your SQL database. For exam-
ple, this will insert the Timestamp into an Oracle date type column called
TIME_STAMP:

AcctColumnDefTIME_STAMP,Timestamp,formatted-date,to_date\
('%e %m %Y %H:%M:%S’, 'DD MM YYYY HH24:MI:SS’)

56 of 124

Radiator Radius Server

Configuration

6.23.11

This will result in a an insert statement something like this:

insert into ACCOUNTING(TIME_STAMP,) values
(to_date('16 02 1999 16:40:02', 'DD MM YYYY HH24:MI:SS’),)

For types other than formatted-date, the format field can be used to build custom values
in your insert statement. This can be very useful to call SQL conversion functions on
your data. If you specify a format, it will be used as a sprintf-style format, where %s
will be replaced by your value.

If any named attribute is not present in the accounting request, nothing will be inserted
in the column for that value. The attribute will not appear in the insert statement at all,
and the SQL server’s default value (usually NULL) will be used for that column. With
some SQL servers, you can change the default value to be used when a column is not
specified in an insert statement.

You can have 0 or more AcctColumnDef lines, one for each attribute you want to store
in the accounting table. If there are no AcctColumnDef lines, then the accounting table
will never be updated.

The attribute Timestamp is always available for insertion, and is set to the time the
packet was received, adjusted by Acct-Delay-Time (if present), as an integer number of
seconds since Midnight Jan 1 1970 UTC.

Here is an example column configuration:

AcctColumnDef USERNAME,User-Name

AcctColumnDef TIME_STAMP,Timestamp,integer
AcctColumnDef ACCTSTATUSTYPE,Acct-Status-Type
AcctColumnDef ACCTDELAYTIME,Acct-Delay-Time,integer
AcctColumnDef ACCTINPUTOCT,Acct-Input-Octets,integer
AcctColumnDef ACCTOUTPUTOCT,Acct-Output-Octets,integer
AcctColumnDef ACCTSESSIONID,Acct-Session-Id
AcctColumnDef ACCTSESSTIME,Acct-Session-Time,integer
AcctColumnDef ACCTTERMINATECAUSE,Acct_Terminate-Cause
AcctColumnDef NASIDENTIFIER,NAS-Identifier
AcctColumnDef NASPORT,NAS-Port,integer

Hint: If your accounting table inserts aren’t working, run Radiator at a trace level of 4,
and you will see each insert statement logged before it is executed. This will help you
determine if your AcctColumnDef lines are correct.

Hint: SQL table and column names are generally case sensitive, and usually can consist
only of letters, digits or the underscore character ‘.

AcctSQLStatement

This parameter allows you to execute arbitrary SQL statements each time an accounting
request is received. You might want to do it to handle processing in addition to the nor-
mal inserts defined by AcctColumnDef, or you might want to construct a much more
complicated SQL statement than AcctColumnDef can handle. You only need this if the
accounting definitions provided by AcctColumnDef are not powerful enough.

Radiator Radius Server 57 of 124

Configuration

6.23.12

6.24

6.24.1

You can have as many AcctSQLStatement parameters as you like (i.e. 0 or more). Each
one will have its special formatting macros replaced at run time (the ones of the format
%({attribute-name} are probably the most useful). They are executed in the order they
appear in the configuration file.

AcctSQLStatement delete from ONLINE where \
SessionID="%{Acct-Session-Id}’

Hint: By having multiple AuthBy SQL clauses, and by using AccountingStartsOnly and
AccountingStopsOnly, in conjunction with AcctSQLStatement, you could implement a
“who is online” table.

Timeout

This parameter specifies a maximum period of time in seconds that we are prepared to
wait for a connection or a reply from an SQL server. In the case of network failure, lost
connectivity with the SQL server can mean that Radiator will wait up to this number of
seconds before aborting the request. If you have specified an alternate SQL server, Radi-
ator will then fall back to the next SQL server. Defaults to 60 seconds.

Wait a maximum of 10 seconds before failing over
Timeout 10

<AuthBy RADIUS>

AuthBy RADIUS forwards all authentication and accounting requests for this Realm to
another (possibly remote) Radius server. This is often called “proxying”. It is imple-
mented inAUthRADIUS.pm . If and when the remote radius server replies to us, we
will forward the reply back to the client that originally sent the request to us.

This allows Radiator to act as a proxy Radius server, possibly running on the firewall of
your organization. You can also use it to set up roaming realms, or to make your radius
server act as a multiplexer for multiple realms. You can forward certain realms to other
servers within your organization in order to improve performance or redundancy.

You can arrange to forward to primary/secondary radius server pairs by specifying mul-
tiple Host lines.

AuthBy RADIUS understands the following parameters as well as those described in
Section 6.13 on page 36:

Host

The host name(s) where the destination radius server is running. Can be either a DNS
name or an IP address. You can specify one or more radius servers with multiple Host
lines. Radiator will try up to Retries times to contact each host that you specify. If no
response it heard it will try the next host in the list and so on until a reply is received or
the list is exhausted.

Hint: If the DNS name for a Host resolves to multiple IP addresses, Radiator will for-
ward to those addresses in a round-robin fashion. DNS names are resolved at startup
time.

58 of 124

Radiator Radius Server

Configuration

6.24.2

6.24.3

6.24.4

6.24.5

Send all request for this realm to 203.63.154.2, if no reply

try the secondary at 203.63.154.3, if no reply from that,

try all the addresses that radiushosts@open.com.au resolves to
in round-robin fashion.

Host 203.63.154.2

Host 203.63.154.3

Host radiushosts@open.com.au

Secret
The secret we share with the destination radius server. Radiator acts like a Radius client
when it forwards Radius request to another Radius server.

You mustdefine a shared secret for each AuthBy RADIUS, amdtistmatch the secret
configured into the destination Radius server. There is no default. The secret can be any
number of ASCII characters. Any ASCII character except newline is permitted, but it
might be easier if you restrict yourself to the printable characters. For a reasonable level
of security, the Secret should be at least 16 characters, and a mixture of upper and lower
case, digits and punctuation. You should not use just a single recognizable word.

This better agree with the server at
eric.open.com.au or they wont understand us
<AuthBy RADIUS>
Host eric.open.com.au
Secret 6660baFGKMRNs666
</AuthBy>

AuthPort

Specifies which UDP port on the destination Host to which Radiator will send authenti-
cation requests. The argument may be either a numeric port number or an alphanumeric
service name as specified/@tc/services (or its moral equivalent on your sys-

tem). The default port is 1645. Note that the officially assigned port number for Radius
accounting has recently been changed to 1812.

Send authentication to port 1812 on the remote server
AuthPort 1812

AcctPort

Specifies which UDP port on the destination Host to which Radiator will send account-
ing requests. The argument may be either a numeric port number or an alphanumeric
service name as specified/@tc/services (or its moral equivalent on your sys-
tem). The default port is 1646. Note that the officially assigned port number for Radius
accounting has recently been changed to 1813.

Send accounting to port 1813 on the remote server
AcctPort 1813

Retries

If Radiator does not get a reply from the destination Radius server within RetryTimeout
seconds, it will retransmit the request up to this number of retries. Default is 3 (which
means max of 4 transmissions)

Its a poor link, so lots of retries
Retries 10

Radiator Radius Server 59 of 124

Configuration

6.24.6

6.24.7

6.24.8

6.24.9

6.24.10

6.24.11

6.24.12

RetryTimeout

Specifies the number of seconds to wait for a reply before retransmitting. The default is
5 seconds, which is a common value for most Radius clients. If the destination Radius
server is at the end of a distant or saturated link, you may want to set this to 10 or 20
seconds

Its a poor link, wait 15 seconds before retransmission
RetryTimeout 15

StripFromRequest

Strips the named attributes from the request before forwarding it to Host. The value is a
comma separated list of attribute names. StripFromRequest removes attributes from the
request before AddToRequest adds any to the request. There is no default.

Remove any NAS-IP-Address,NAS-Port attributes
StripFromRequest NAS-IP-Address,NAS-Port

AddToRequest

Adds attributes to the request before forwarding to Host. Value is a list of comma sepa-
rated attribute value pairs all on one line, exactly as for any reply item. StripFromRe-
quest removes attributes from the request before AddToRequest adds any to the request.
You can use any of the special % formats in the attribute values. There is no default.

Append a Filter-ID and host name
AddToRequest Calling-Station-ld=1,Login-IP-Host=%h

NoForwardAuthentication
Stops AuthBy RADIUS forwarding Authentication-Requests. They are just
ACCEPTED.

Just accept Authentication-Requests, don't forward them
NoForwardAuthentication

NoForwardAccounting
Stops AuthBy RADIUS forwarding Accounting-Requests. They are just ACCEPTED.

Just accept Accounting-Requests, don't forward them
NoForwardAccounting

LocalAddress

This optional parameter specifies the local address to bind the proxy forwarding socket.
Defaults to BindAddress (which defaults to 0.0.0.0, i.e. any address). This is usually
only useful for multi-homed hosts. If you don’t understand what this is for, don't set it:
the default behaviour is fine for most situations.

We are multi-homed, bind the proxy port so forwarded requests
come from 203.53.154.27
LocalAddress 203.53.154.27

ReplyHook

This optional parameter allows you to define a Perl function that will be called after a
reply is received from the remote Radius server and before it is relayed back to the orig-
inal client. A reference to the original request is passed as the first argument, and a refer-
ence to the reply packet just received is passed as the second argument

60 of 124

Radiator Radius Server

Configuration

6.25

The hook code is compiled by Perl when Radiator starts up. Compilation errors in your
hook code will be reported to the log file at start-up time. Runtime errors in your hook
will also be reported to the log file when your hook executes. Multiline hooks (i.e. with
trailing backslashes (\)) are parsed by Radiator into one long line. Therefore you should
not use trailing comments in your hook.

ReplyHook Can be an arbitrarily complicated Perl function, that might run external pro-
cesses, consult databases, change the contents of the current request or many other
things.

Fake a new attribute into the reply going back to the client
ReplyHook sub { ${$_[0]}->add_attr(‘test-attr’, \
‘test-value’);}

<AuthBy EMERALD>

AuthBy EMERALD provides authentication and accounting using the popular Emerald
ISP billing package from IEA (http://www.emerald.iea.com). The combination of Radi-
ator and Emerald provides a very powerful and easy to use ISP billing and user manage-
ment system. You will be able to add users to Emerald, and have them able to log in
immediately. Changing their password takes effect immediately, and all user logins are
available as soon as they are completed: no need to import accounting files.

Hint: This AuthBy method will also work for Platypus when it has its optional Radi-
usNT compatibility package installed.

Emerald uses Microsoft SQL for its user database, so in order to make Radiator work
with Emerald on Unix, you will usually need to install an ODBC driver, plus the Perl
DBD-ODBC module.

During authentication, Radiator checks the password in the Emerald “masteraccounts”
and “subaccounts” tables. It also gathers radius reply attributes from the RadConfigs
and RadATConfigs tables. The RadATConfigs table (which contains per-account-type
radius reply items) is only consulted if there are no per-user reply items for the user in
the RadConfigs table (but you can change this behaviour with AddATDefaults, see
Section 6.25.2 on page 62).

AuthBy EMERALD does not use the Radius client configuration and secrets entered
into the Emerald “Radius Config”. You still need to configure a <Client> clause in Radi-
ator for each NAS you are going to use.

AuthBy EMERALD will connect to the Emerald database as the user you specify in the
DBUsername parameter. You will probably have to create such a login in your database,
and make sure they are a member of the Emerald database group.

During accounting, Radiator logs call details from each Accounting request to the
Emerald “Calls” table.

There is an example Radiator configuration file for Emerald in goodies/emerald.cfg.
You should use this as the starting point for configuring Radiator to work with Emerald.

Radiator Radius Server 61 of 124

Configuration

6.25.1

6.25.2

6.26

AuthBy EMERALD understands exactly the same parameters as <AuthBy SQL> (see
Section 6.23 on page 51). It also understands the following additional parameters:

TimeBanking

If this optional parameter is set, it will enable Time Banking, which can be used to limit
the longest possible user session for the user to a pre-paid limit. If TimeBanking is
enabled and if the “subaccounts.timeleft” column for the user is not NULL, then Radia-
tor will use it to generate a Session-Timeout reply attribute. This has the effect of limit-
ing the user session to the number of minutes specified in the subaccounts.timeleft
column.

AddATDefaults

If this optional parameter is defined, then the account-type-specific Radius reply items
will be used unless there was a user-specific reply item. This allows you to use the
account-specific reply items as defaults.

<AuthBy PLATYPUS>

AuthBy PLATYPUS provides authentication and accounting using the popular Platypus
ISP billing package from Boardtown (http://www.boardtown.com). The combination of
Radiator and Platypus provides a very powerful and easy to use ISP billing and user
management system. You will be able to add users to Platypus, and have them able to
log in immediately. Deactivating a Platypus account or changing their password takes
effect immediately, and all user logins are available as soon as they are completed: no
need to import accounting files.

Platypus uses Microsoft SQL for its user database, so in order to make Radiator work
with Platypus on Unix, you will usually need to install an ODBC driver, plus the Perl
DBD-ODBC module.

During authentication, Radiator checks the password in the Platypus customer table. It
also checks the “Block User” state. If it is set to Y or G, Radiator will check the Platy-
pus Time Left field, and will reject the login if the time left is negative. Otherwise, it

will accept the login, and set Session-Timeout in the reply to the number of seconds of
login time left. This allows you to prevent users overspending the prepaid time.

During accounting, Radiator logs call details from each Accounting Stop request to the
Platypus radiusdat table.

There is an example Radiator configuration file for Platypus in goodies/platypus.cfg.
You should use this as the starting point for configuring Radiator to work with Platypus.

Hint: Boardtown have an optional package that makes Platypus compatible with Radi-
usNT, an NT-only radius server. With this package installed, Platypus will let you set up
per-user and per-service Radius attributes using Platypus editing screens in the menu
Maintenance->RadiusNT Setup. Radiator can also work with this, but you must use
<AuthBy EMERALD> instead of <AuthBy PLATYPUS>, and configure it as if for
Emerald. See Section 6.25 on page 61.

AuthBy PLATYPUS understands the following parameters:

62 of 124

Radiator Radius Server

Configuration

6.26.1

6.26.2

6.26.3

6.27

DBSource, DBUsername, DBAuth

These parameters need to be set in exactly the same way as for <AuthBy SQL>. They
specify the DBD driver, database and username to connect to. For connecting to the
Platypus Microsoft SQL database by ODBC, you will usually want something like this:

Connect to MSSQL with system DSN name MySystemName
DBSource dbi:ODBC:MySystemName

DBUSername platuser

DBAuth platpassword

AccountingTable

This optional parameter specifies the name of the Platypus table to insert Accounting
Stop requests into. It defaults to “radiusdat” which is the usual name for that table in
Platypus. You will normally not want to change it. If you change it to the empty string,
Radiator will not store any Accounting requests to Platypus at all.

don’t store any accounting data to platypus
AccountingTable

AcctColumnDef

By default, AuthBy PLATYPUS only logs a few attributes to AccountingTable: user
name, call start time, call end time and session ID. You can log additional attributes
from Accounting Stop requests with AcctColumnDef in the same was as AuthBy SQL.
See Section 6.23.10 on page 56 for syntax. You must add the appropriate new columns
to your AccountingTable before you can log to them.

Log some extra data from each Stop
AcctColumnDefNASIDENTIFIER,NAS-Identifier
AcctColumnDefACCTTERMINATECAUSE,Acct-Terminate-Cause

<AuthBy RODOPI>

AuthBy RODOPI provides authentication and accounting using the popular Rodopi ISP
billing package (http://www.rodopi.com). The combination of Radiator and Rodopi pro-
vides a very powerful and easy to use ISP billing and user management system. You will
be able to add users to Rodopi, and they will be able to log in immediately. Changing
their password takes effect immediately, and all user logins details are available as soon
as they are completed: no need to import accounting files.

Rodopi uses Microsoft SQL for its user database, so in order to make Radiator work
with Rodopi on NT, you will usually need to install an ODBC driver, plus the Perl
DBD-ODBC module. On Unix, you will need to install DBD-Sybase and the Sybase
client library to allow Radiator to connect to Microsoft SQL on NT.

During authentication, Radiator checks the password in the Rodopi “Logins” table. It
also gathers radius check and reply attributes from the RadiusUsers table.

AuthBy RODOPI will connect to the Rodopi database as the user you specify in the
DBUsername parameter. The default username that Rodopi installs is “Rodopi”, with
password “rodopi”.

Radiator Radius Server 63 of 124

Configuration

6.28

During accounting, Radiator logs call details from each Accounting request to the
Rodopi “UsageOnlineHours” table.

There is an example Radiator configuration file for Rodopi in goodies/rodopi.cfg. You
should use this as the starting point for configuring Radiator to work with Rodopi.

AuthBy RODOPI understands exactly the same parameters as <AuthBy SQL>.

Authenticate everyone with Rodopi using the ODBC
DSN called “Rodopi”
<Realm DEFAULT>
<AuthBy RODOPI>
DBSourcedbi:ODBC:Rodopi
DBUsernameRodopi
DBAuth rodopi
</AuthBy>
</Realm>

<AuthBy LDAP> <AuthBy LDAP2> and <AuthBy LDAPSDK>

AuthBy LDAP, AuthBy LDAP2 and AuthBy LDAPSDK provide authentication via
LDAP. They all provide much the same features, but they interface to the LDAP server
via different Perl modules.

AuthBy LDAP works with Clayton Donley’s Net::LDAPapi module version 1.42 or bet-
ter (Available from CPAN). It is implemented in AuthLDAP.pm. The Net::LDAPapi
will work with both UNiversity of Michigan LDAP and Netscape’s LDAP SDK. It is
now deprecated. You should use LDAP2 for new installations.

AuthBy LDAP2 works with the newer Net::LDAP module version in perl-ldap-0.09 or
better (Available from CPAN). It is implemented in AuthLDAP2.pm. The Net::LDAP
will work with both University of Michigan LDAP and Netscape’s LDAP SDK, but it
does not support SSL encrypted connections to the LDAP server.

AuthBy LDAPSDK works with Netscape’s PerLDAP module and the Netscape Direc-
tory SDK. We provide this in addition to the others because PerLDAP is readily avail-
able as an installable module for ActiveState Perl on NT. If you want to use LDAP on
NT, we recommend you use ActiveState Perl, the PerLDAP module and Netscape Suite
Spot directory server.

All the AuthBy LDAP modules authenticate by issuing requests to an LDAP server.
When the LDAP server replies, Radiator fetches a number of attributes and looks in
them for the password, check items and reply items in order to authenticate the user. It
does not log (but does reply to) accounting requests. You will need to have a basic
understanding of LDAP servers and databases in order to configure AuthBy LDAP.

When AuthBy LDAP receives its first authentication request, it attempts to connect to
the LDAP server specified by Host. Optionally you can authenticate Radiator as a valid
user of the LDAP server by specifying AuthDN and AuthPassword. (This is not the

64 of 124

Radiator Radius Server

Configuration

6.28.1

6.28.2

6.28.3

same thing as authenticating a user. It happens before authenticating a user, and prove:s
that this radiusd is allowed to talk to the LDAP database).

AuthBy LDAP will then try to fetch some attributes for the user. You can specify the
base DN to start looking in, and the attribute name with which to filter. You also specify
the attributes that contains the password, and (optionally) the names of the attributes
containing an encrypted password, Radius check items and Radius reply items. This
scheme allows you to work with almost any LDAP schema. All you have to do is iden-
tify the right LDAP attribute names.

If all the check items are satisfied by the attributes in the request, AuthBy LDAP will
reply with an Access-Accept message containing all the attributes in the reply items
attribute (if any). If the user does not appear in the LDAP database, or if any check

attribute does not match, an Access-Reject message is sent to the client.

At present, AuthBy LDAP doesynchronougonnections and searches. This can mean
significant delays if your LDAP server is reached by a slow network connection. If this
is the case, you should consider putting the AuthBy LDAP realm in a sub-server, and
having your main Radiator forward requests for that realm to the Radius sub-server.

AuthBy LDAP understands the following parameters as well as those described in
Section 6.13 on page 36:

Host
This is the name of the LDAP host to connect to. Defauliscaihost

Connect to UMICH
Host Idap.itd.umich.edu

Port

Specifies the port to connect to on the LDAP host. Defaults to 389, the standard port for
unencrypted LDAP. If UseSSL is specified, it defaults to 636, the standard port for
encrypted LDAP. Can be a numeric port number or a symbolic service name from /etc/
services or its equivalent on your system. You should never need to override the
defaults.

Connect using the SSL encrypted port
Port 636

UseSSL

This optional parameter specifies to use SSL to connect to the LDAP server, and the
name of your certificate database file. It is only available with Netscape SDK based cli-
ents and the Netscape LDAP server. The database must either be the cert5.db certificate
database used by Netscape Navigator 3.x or the ServerCert.db certificate database use
by Netscape 2.x servers. You can use special filename characters in the filename.

UseSSL is not supported with LDAP2.

Enable SSL and tell it where to find certificates
UseSSL /.netscape/cert5.db

Radiator Radius Server 65 of 124

Configuration

6.28.4

6.28.5

6.28.6

6.28.7

6.28.8

6.28.9

AuthDN

This is the optional name to use to authenticate this Radiator server to the LDAP server.
You only need to specify this if the LDAP server requires authentication from its clients.
Netscape SuiteSpot servers almost always require this to be set.

Log in to LDAP as admin
AuthDn admin

AuthPassword

This is the optional password to use to authenticate this Radiator server to the LDAP
server. You only need to specify this if the LDAP server requires authentication from its
clients, and you specify AuthDN. Netscape SuiteSpot servers almost always require this
to be set.

log in to LDAP with password adminpassword
AuthPassword adminpassword

BaseDN

This is the base DN where searches will be made. For each authentication request, Radi-
ator does a SUBTREE search starting at BaseDN, looking for a UsernameAttr that
exactly matches the user name in the radius request (possibly after username rewriting).

Start looking here
BaseDN o=University of Michigan, c=US

UsernameAittr

This is the name of the LDAP attribute that is required to match the username in the
authentication request (possibly after username rewriting by RewriteUsername).
Defaults to “uid”. The LDAP search filter is constructed from UsernameAttr and the
name of the user in the Access-Request like this: “(UsernameAttr = username)” For
example, if you UsernameAttr is “uid”, and user “mikem” tries to log in, Radiator will
use the LDAP filter “(uid=mikem)”.

Use the uid attribute to match usernames
UsernameAttr uid

PasswordAttr

This is the name of the LDAP attribute that contains the password for the user. The pass-
word may be in any of the formats supported by User-Password as described in
Section 13.1.1 on page 90. Most LDAP servers will only have a plaintext password if
they are secured in another way, and probably not even then. You must specify either
PasswordAttr or EncryptedPasswordAttr. There is no default.

Plaintext passwords. Gasp
PasswordAttr passwd

EncryptedPasswordAttr

This is the optional name of the LDAP attribute that contains a Unix crypt(3) encrypted
password for the user. If you specify EncryptedPasswordAttr, it will be used instead of
PasswordAttr, and PasswordAttr will not be fetched. You must specify either Passwor-
dAttr or EncryptedPasswordAttr. There is no default.

66 of 124

Radiator Radius Server

Configuration

6.28.10

6.28.11

6.29

6.29.1

Hint: If your passwords are in the foferypt}1xMKcOGIVUNDE or
{SHA}ODPiKuNIrrVmD8IUCuwlhQxNgZc=, you should be using PasswordAttr,

not EncryptedPasswordAttr. Only use EncryptedPasswordAttr if the your password are
plain old Unix crypt format, likelxMKcOGIVUNDBE

Get the encrypted password from cryptpw
EncryptedPasswordAttr cryptpw

CheckAttr

This is the optional name of the LDAP attribute that contains the Radius check items for
the user. During authentication, all the check items in this LDAP attribute (if specified)
will be matched against the Radius attributes in the authentication request in the same
was as for AuthBy FILE and AuthBy SQL, including Expiration in the format “Dec 08
1998". Defaults to undefined. See Section 13.1 on page 90 for information on how
check items are used.

Hint: If there are multiple instances of the LDAP attribute for the user, they are concate-
nated together with commas. This means that you can have each Radius check attribute
in its own LDAP attribute for easy reading and maintenance.

Check the radius items in checkitems
CheckAttr checkitems

ReplyAttr

This is the optional name of the LDAP attribute that contains the Radius reply items for
the user. If the user authenticates successfully, all the Radius attributes named in this
LDAP attribute will be returned to the user in the Access-Accept message. Defaults to
undefined. See Section 13.2 on page 95 for information on how reply items are used.

Hint: If there are multiple instances of the LDAP attribute for the user, they are concate-
nated together with commas. This means that you can have each Radius reply attribute
in its own LDAP attribute for easy reading and maintenance.

Reply with all the items in replyitems
ReplyAttr replyitems

<AuthBy SYSTEM>

AuthBy SYSTEM provides authentication with your getpwnam and getgrnam system
calls. On most Unix hosts, that will mean authentication from the same user database
that normal user logins occur from, whether that be /etc/passwd, NIS, YP, NIS+ etc. Itis
implemented in AuthSYSTEM.pm. This allows you to hide whether its password files,
NIS+, PAM or whatever else might be installed on your system. It is not supported on
Win95 or NT, or on systems (such as Solaris) with shadow password files (unless Radi-
ator runs with root permissions).

AuthBy TACACSPLUS understands the following parameters as well as the generic
ones described in Section 6.13 on page 36:

UseGetspnam
On some operating systems (notably Solaris) AuthBy SYSTEM needs this parameter to
enable it to get the encrypted password from /etc/shadow or NIS+ You also need the

Radiator Radius Server 67 of 124

Configuration

6.30

6.30.1

6.30.2

6.30.3

6.30.4

6.31

Shadows module frorftp://dagobert.eur.nl/pub/homebrew/Shadow-

0.01.tar.gz or better. Use this if you are running on Solaris, or if Radiator reports
“Bad Encrypted-Password” even if you are sure the password and ther shared secret are
correct.

We are on Solaris, and have installed “Shadows”
UseGetspnam

<AuthBy TACACSPLUS>

AuthBy TACACSPLUS provides authentication via a TacacsPlus server. It supports
authentication only, not accounting or authorization. It requires the Authen::TacacsPlus
module from CPAN. You must use at least version TacacsPlus-0.15.tar.gz. Earlier ver-
sions willnotwork properly. If it is not available at CPAN, you can get it from the
authors at http://www.corbina.net/~msh/mytools/TacacsPlus-0.15.tar.gz. Version 0.15
will support PAP authentication only. Later versions will support both PAP and CHAP.

AuthBy TACACSPLUS has not been tested on Windows 95 or NT.

AuthBy TACACSPLUS understands the following parameters as well as the generic
ones described in Section 6.13 on page 36:

Host
This optional parameter specifies the name of the host where the TacacsPlus server is
running. It can be a DNS name or an IP address. Defaults to ‘localhost’.

Host oscar.open.com.au

Key

This mandatory parameter specifies the encryption key to be used to encrypt the connec-
tion to the TacacsPlus server. Mowistspecify this. There is no default. It must match

the key specified in the TacacsPlus server configuration file.

There is a line saying key = mytacacskey in my tac_plus
config file
Key mytacacskey

Port

This optional parameter specifies the TCP port to be used to connect to the TacacsPlus
server. It can be a service name as specified in /etc/services or an integer port number.
Defaults to ‘tacacs’ (TCP port 49). You should not need to change this unless your
TacasPlus server is listening on a non-standard port.

Timeout
This optional parameter specifies the number of seconds timeout. Defaults to 15. You
would only need to change this under unusual circumstances.

<AuthBy NISPLUS>

AuthBy NISPLUS provides authentication via your NIS+ database. It is implemented in
AuthNISPLUS.pm. It looks for user information in an NIS+ table, and uses that infor-
mation as check and reply items for the user. It does not log (but does reply to) account-

68 of 124

Radiator Radius Server

Configuration

6.31.1

6.31.2

6.31.3

ing requests. You will need to have a basic understanding of NIS+ databases in order to
configure AuthBy NISPLUS.

AuthBy NISPLUS has not been tested on Windows 95 or NT.

When AuthBy NISPLUS receives its first authentication request, it attempts to connect
to the NIS+ table defined by the Table parameter. AuthBy NISPLUS will then try to
fetch some fields for the user from the table. You can specify the query to use to locate
the user in the NIS+ table with the Query parameter. You also specify the NIS+ field that
contains the password, and (optionally) the names of fields containing an encrypted
password, Radius check items and Radius reply items. This scheme allows you to work
with almost any NIS+ table definition, however the defaults are set up so you can
authenticate from a standard NIS+ passwd table without having to add any special defi-
nitions.

If all the check items are satisfied by the request, AuthBy NISPLUS will reply with an
Access-Accept message containing all the attributes in the reply items (if any). If the
user does not appear in the NIS+ Table, or if any check item does not match, an Access-
Reject message is sent to the client.

AuthBy NISPLUS understands the following parameters as well as those described in
Section 6.13 on page 36:

Table

This optional parameter defines the name of the NIS+ table to search in. It defaults to
passwd.org_dir which is the name of the standard password table in NIS+. You
would not normally need to change this. You could define your own NIS+ table with
your own table structure to authenticate from, and define the name of the table with the
Table parameter. You might occasionally want to specify a table for a specific domain
with Table:

Use the mydomain.com password table
Table passwd.org_dir.mydomain.com

Query

This optional parameter specifies how users are to be located in the NIS+ table. It is a
list of field=value pairs. You can use any of the special macros such as %n for the user
name described in Section 6.2 on page 10. The default is [name=%n], which will find
the user name in a standard NIS+ passwd table. You would only need to define this if
you define your own NIS+ table to authenticate from.

Use cname and type in our own special table
Query [cname=%n,type=LOCAL]

EncryptedPasswordField

This optional parameter specifies the name of the field in the NIS+ table that contains
the encrypted password for the user. It defaulatswd , which is the name of the
password field in the standard NIS+ passwd table. Radiator will use this field as the
source of the encrypted password with which to check authentication requests.

Radiator Radius Server 69 of 124

Configuration

6.31.4

If you define any AuthFieldDef parameters, EncryptedPasswordField will be ignored
completely, and you will have to define every check and reply item (including the
encrypted password) with an AuthFieldDef entry.

Our special table has the password in pw
EncryptedPasswordField pw

AuthFieldDef

This optional parameter allows you to specify precisely how the fields in the NIS+ table
are to be interpreted. If any AuthFieldDef parameters are specified, EncryptedPassword-
Field will be completely ignored, and you will have to define every check and reply item
(including the encrypted password) with an AuthFieldDef entry.

You can specify as many AuthFieldDef parameters as you like, one for each check and
reply item in the NIS+ table.

You can specify any number of AuthFieldDef parameters, one for each interesting field
in the NIS+ table. The general format is:

AuthFieldDef fieldname,attributename,type

* fieldname is the field in the NIS+ table that contains the value to check or reply. If
fieldname is not present in the NIS+ table, or is empty for the user, it won’t be used.

» attributename is the name of the radius attribute to be checked or replied. The special
attributename ‘GENERIC’ indicates that it is a list of comma separated
attribute=value pairs, not just a single attribute

* type indicates whether it is a check or reply item.
A few examples are in order:
Example 1

The standard NIS+ passwd table contains user name and encrypted password. You can
interface to such a table by having an empty AuthBy NISPLUS clause:

<AuthBy NISPLUS>
</AuthBy>

Just for illustration purposes, that is exactly equivalent to the following:

<AuthBy NISPLUS>

Table passwd.org_dir

Query [name=%n]

AuthFieldDef passwd,Encrypted-Password,check
</AuthBy>

Example 2
You might define a special NIS+ table something like this: the table called “users” con-

tains user names in the “uname” column, encrypted password in the “pw” column, and
an optional IP address to use in the “address” column:

70 of 124

Radiator Radius Server

Configuration

6.32

6.32.1

6.33

<AuthBy NISPLUS>
Table users.org_dir
Query [uname=%n]
AuthFieldDef pw,Encrypted-Password,check
AuthFieldDef address,Framed-IP-Address,reply
</AuthBy>

<AuthBy PAM>

AuthBy PAM provides authentication via any method supported by PAM (Pluggable
Authentication Modules) on your host. It is implemented in AuthPAM.pm. It requires
that PAM be installed and configured on your host, and it also requires the Perl module
Authen-PAM-0.04 or later (available from CPAN).

AuthBy PAM asks PAM to authenticate the user using the PAM service specified with
the Service parameter (defaults to “login”).

AuthBy PAM has not been tested on Windows 95 or NT.

Hint: make sure PAM is configured on your host before building and testing the
Authen-PAM Perl module, otherwise “make test” will report errors. This will usually
require configuringetc/pam.conf , or perhapgetc/pam.d/login for the

login service. For example, on our RedHat 5.2 Linux, we found that we had to remove
the pam_securetty from oletc/pam.d/login file to enable testing from other

than a secure TTY. Consult your system documentation for details on configuring PAM.

AuthBy PAM understands the following parameters as well as those described in
Section 6.13 on page 36:

Service
This optional parameter specifies the PAM service to be used to authenticate the user
name. If not specified, it defaults to “login”.

We want to use the PAM “ppp” service to authenticate our users
Service ppp

<AuthBy PORTLIMITCHECK>

<AuthBy PORTLIMITCHECK> can apply usage limits for arbitrary groups of users. It
is implemented in AuthPORTLIMITCHECK.pm. It requires that you have a <Session-
Database SQL> defined in your Radiator configuration.

This module allows you to specify for example that up to 20 ports can be used by a cus-
tomer with a certain DNIS, or 10 ports in one POP and 20 ports in another. Users can be
grouped by any attribute stored in your SQL Session Database.

Furthermore, you can arrange to set the Class attribute for the session depending on
bamds of port usage. This could allow you to charge different amounts for the first 10
and the scond 10 porst, for example, or to have a premium price for excessive port occu-
pancy. (The Class attribute set this way will be sent back by the NAS in all accounting
reguests for that session. You could then use the value of the Class attribute to tell your

Radiator Radius Server 71 of 124

Configuration

billing system how much to charge for the session. The ability to actually charge differ-
ently depends on the functions of your billing system)

This module must be used in conjunction with some other module tha5t actually per-
forms the authentication of the user. PORTLIMITCHECK should be considerd as a pre-
check to make sure that the login would be within the port occupancy limits you have
specified.

AuthBy PAM understands the following parameters as well as those described in
Section 6.13 on page 36:

6.33.1 CountQuery
This parameter specifies an SQL query that wil be used to count the users currently
online according to the SQL Session Database. Defaults to “select COUNT(*) from
RADONLINE where DNIS="%{Called-Station-1d}". AuthBy PORTLIMITCHECK
will compare the results of thios query with SessionLimit in order to determine wherther
the user wil be permitted to log in at all.

Hint: You must have a <SessionDatabase SQL> configured into Radiator. The Session
Database must be configured to save the columns that you plan to use to group users in
your CountQuery. So, if you are using the default CountQuery, your SQL Session Data-
base must be configured to save the Called-Station-Id attribute to the DNIS column,
with something like:

<SessionDatabase SQL>
DBSourcedbi:mysql:radius
DBUsernamemikem
DBAuth fred
We want to save the DNIS as well as the usual things.
Requires a different schema to the example RADONLINE
provided
AddQueryinsert into RADONLINE (USERNAME,\
NASIDENTIFIER, NASPORT, ACCTSESSIONID, TIME_STAMP\
FRAMEDIPADDRESS, NASPORTTYPE, SERVICETYPE, DNIS) \
values ('%n’, '%N’\
%{NAS-Port}, '%{Acct-Session-Id}’, %{Timestamp},\
%{Framed-IP-Address}’, '%{NAS-Port-Type}’, \
"%{Service-Type}, '%{Called-Station-1d}’)
</SessionDatabase>

6.33.2 SessionLimit
This parameter specifies the absolute upper limit to the number of current logins permit-
ted to this group of users. Defaults to 0. For example if SessionLimit is set to 10, then up
to 10 concurrent sessions are permitted. If an 11th user attempts to log in through this
AuthBy, they will be rejected.

They have paid for 20 ports
SessionLimit20

6.33.3 ClassForSessionLimit
This optional parameter allows you to set up different charging bands for different levels
of port occupancy in this group of users. You can have one or more ClassForSession-

72 of 124 Radiator Radius Server

radiusd

7.0

Limit lines. If the current level of port usage is below a ClassForSessionLimit, then the
class name will be applied as a Class attribute to that session. Your NAS will then tag all
accounting records for that session with the Class attribute. If your billing system
records and uses the Class attribute in accounting records, then you could use this to
charge differently for different levels of port occupancy.

The first 2 users will be tagged with a Class of “normal”

the next 2 with “overflow”. No more than 4 concurrent users
permitted

SessionLimit 4

ClassForSessionLimit normal,2

ClassForSessionLimit overflow,4

radiusd

Radiusd is the Radiator Radius server. At startragliusd ~ will try to open and read

its configuration file. By default the configuration fildusr/local/etc/

radius.cfg , but this can be changed with theonfig_file flag. When started,
radiusd will create a PID file in the location specified by PidFile in the configuration file
(the default is /etc/radiusd.pid).

If radiusd is signalled with SIGHUP, it will reinitialize by rereading the configuration
file. All Clients and Realms defined in the old configuration file will be lost, and new
ones will be configured. The effect of SIGHUP is expected to be the same as if you
killed and then restartaddiusd

If radiusd is signalled with SIGTERM, it will exit gracefully.

If radiusd is signalled with SIGUSRL, it will increase its current Trace level by 1.
SIGUSR2 will decrease it by one.

Command line arguments given to radiusd will override parameter settings in the con-
figuration file. You should consult the section on global configuration file parameters
(See Section 6.3 on page 12) for the meaning of those parameters.

The arguments are:

e radiusd [-h] [-auth_port port] [-acct_port port]
[-db_dir dirname] [-log_dir dirname]
[-log_file filename]

[-config_file filename]
[-dictionary_file filename]
[-foreground] [-daemon] [-log_stdout]
[-trace n] [-pid_file filename]
[-snmp_port port]

* -h
Print usage information and exit.
e -auth_port port
Specifies the port to listen for Access-Requests. Overrides AuthPort.

Radiator Radius Server 73 of 124

radpwtst

8.0

e -acct_port port
Specifies the port to listen for Accounting-Requests. Overrides AcctPort.
e -db_dir dirname
Specifies the database directory. Overrides DbDir.
* -log_dir dirname
Specifies the log file directory. Overrides LogDir.
* -log_file filename
Specifies the name of the log file. Overrides LogFile.
* -config_file filename

Readfilename as the configuration file. Defaults/tesr/local/etc/
radius.cfg

e -dictionary _file filename

Specifies the name of the dictionary file. Overrides Dictionary.
» -foreground

Run in the foreground, not as a daemon. The default behaviour is to run as a daemon.
e -daemon

Forces radiusd to run as a daemon (in the background) regardless of the setting of
Foreground in the configuration file.

* -log_stdout

Log to STDOUT as well as to LogFile, if running in the foreground.
e -tracen

Set the trace level to. Overrides Trace.
e -pid_file filename

Write the PID tdilename . Overrides PidFile.
e -bind_address dotted-ip-address

Specifies a single IP address to listen on. Overrides BindAddress.
* -snmp_port port

Specifies the SNMP port to be used by SNMPAgent. Overrides any SNMP port in
the configuration file Port may be either a port number or a port name from /etc/ser-
vices.

radpwtst

Radpwtst sends requests to a Radius server such as Radiator, and waits for a reply.
You can use it to send Access-Request, Accounting-Request (Stop and Start) and Sta-
tus-Server requests. Radpwtst is good for checking that your Radiator server (or any
other Radius server for that matter) is configured and behaving correctly, and also for
checking that a users password is correct.

By default, radpwtst will send an Access-Request, wait up to 5 seconds for a reply, send
an Accounting-Request (Start), wait for a reply, then send an Accounting-Request

74 of 124

Radiator Radius Server

radpwtst

(Stop) and wait for a reply. You can change this behaviour with the command line flags
too.

Hint: A fundamental requirement of the Radius protocol is that the Radius Client (in

this case radpwtst) and the Radius Server (in this case Radiator) must use the same
shared secret. If Radiator keeps rejecting your request with a “Bad Password”, even
though you are sure the password is correct, it may be because the shared secrets are nc
correct. Check the “Secret” line in your Radiator config file, and perhaps use the

secret command line argument to radpwtst. If you don’t specifsegret argu-

ment to radpwitst, it will use “mysecret” by default.

Hint: While testing with radpwtst, you should set up a Client for localhost with a
Duplnterval to 0 in Radiator, otherwise Radiator may report duplicate requests and
other misleading errors. Add something like this to your Radiator configuration file, and
you will be able to run radpwtst freely on the same host as where Radiator is running.

<Client localhost>
Secret mysecret
Dupinterval O
</Client>

The arguments to radpwtst are:

radpwtst[-time] [-iterations n]

[-trace] [-s server] [-secret secret]
[-noauth] [-noacct][-nostart] [-nostop]
[-accton] [-acctoff]
[-framed_ip_address address]
[-status] [-chap] [-auth_port port]
[-acct_port port] [-identifier n]
[-user username] [-password password]
[-nas_ip_address address] [-nas_port port]
[-service_type service] [-session_id string]
[-delay_time n] [-session_time n]
[-input_octets n] [-output_octets n]
[-timeout n]
[-dictionary file]
[-gui]
[attribute=value]...

e -time

Specifies that radpwtst will print the elapsed time taken to send and receive all itera-
tions when it is finished. Useful for testing purposes, since it is a measure of how fast
the radius server can handle requests.

e -jterations n
Send all the selected requests n times, instead of just once.
e -trace

Print useful trace information, including the full contents of all transmitted and
received requests.

* -Sserver

Radiator Radius Server 75 of 124

radpwtst

Send all the requests server , which can be either the IP address or the DNS
name of the host where the destination Radius server runs. The ddfmdi-is
host .

-secret secret

Use secret as the shared secret. The defaulgsecret .

-noauth

Don't send the Access-Request.

-noacct

Don’t send either of the Accounting-Request.

-nostart

Don’t send the Access-Request Start.

-nostop

Don't send the Access-Request Stop.

-accton

Send Accounting-On request.

-acctoff

Send Accounting-Off request

-status

Send a Server-Status. The contents of the reply will be printed.
-chap

Authenticate with CHAP, instead of PAP.

-user username

Requests will be tagged with User-Nameusérname . Default ismikem.
-password password

In Access-Requests, the password wilpbssword . Default is fred.
-nas_ip_address address

Access and Accounting request will have NAS-IP-Addressldfess . Default is
203.63.154.1.

-nas_port port
Access and Accounting request will have NAS-Pogiat . Default is 1234.
-service_type service

Access and Accounting request will have Service-Tyepfice . Default is
Framed-User.

-session_id string

Accounting request will have Acct-Session-IDstifing . Default is 00001234.
-delay_time n

Accounting request will have Acct-Delay-Timerof Default isO.

-session_time n

Accounting request will have Acct-Session-Time of n. Default is 1000.

76 of 124

Radiator Radius Server

radpwtst

e -input_octets n

Accounting request will have Acct-Input-Octets of n. Default is 20000.
e -output_octets n

Accounting request will have Acct-Output-Octets of n. Default is 30000.
e -timeoutn

Specifies the time in seconds that radpwtst will wait for a reply. Default is 5 seconds.
If you specify 0, it will not wait for a reply at all.

e -dictionary file
Usefile as the dictionary file. Defaults ttlictionary.
e -framed_ip_address address

Access requests will be sent with the given Framed-IP-Address. Defaults to 0.0.0.0.
If the address is 0.0.0.0, it will not be sent in the request.

e -gui
Present a Graphical User Interface that allows easy interactive testing. This GUI will

run on Unix and PC hosts. Requests will be sent when the Send button is pressed,
and the GUI will stay up after the requests have been sent, so you can send more.

e attribute=value

You can also force any number of additional attributes to be sent in each request by
naming them with their values on the command line. attribute must be the name of
an attribute in your dictionary, and value must be a valid value for that attribute.

Examples:

Send Access-Request and Accounting Start to server oscar.open.com.au for user
mikem@your.realm and password jim. Authenticate with CHAP. Make sure the request
includes Called-Station-1d of 12345:

radpwtst -s oscar.open.com.au -nostop -chap
-user mikem@your.realm -password jim
Called-Station-1d=12345
Send Server-Status request to fred.open.com.au, print the reply:
radpwtst -status -noauth -noacct -s fred.open.com.au
-trace
Send 1000 Access-Requests to 1.2.3.4 for user fred, password jim, and print out how
long it took:
radpwtst -iterations 1000 -noacct -user fred
-password jim -time
Make the GUI appear for extended interactive testing:

radpwtst -gui

Radiator Radius Server 77 of 124

radpwtst

8.1

The radpwtst GUI

Theradpwtst program will present a Graphical User Interface (GUI) when it is
started with thegui flag. If you select this option, the GUI will stay visible until dis-
missed. This allows you to send a nhumber of different requests with a single mouse
click, and to quickly and easily change the attributes to be sent. These features allow
easy testing of Radiator (or any other Radius server for that matter), particularly when
configuring a new realm or user.

The command line flags given to radpwtst are used to preconfigure the values you see in
the interface. You can change the values at any time to affect the next request to be sent.
Press the Start button to commence sending, and the Stop button to stop sending.

On each iteration, radpwtst will send one of each of the requests selected in the middle
panel. The requests will contain attributes and values configured in the first panel, and
the requests will be sent to the server and ports configured in the third panel. Not all
attributes are sent in every request type: only the usual ones for that request type.

In the lower panel, you can trace the progress of each request and the reply, You can
control the level of detail seen for each request and reply with the Options->Trace Level
menu.

78 of 124

Radiator Radius Server

builddbm

FIGURE 1. radpwtst Graphical User Interface

Options->Trace Level changes the level of

C Control what types of requests
detail seen

to send here
This section controls which

Press Start server tg send to

to start
sending

e

Siend thesn abiribuies;

ik - Madimt [z o
Set up the attributes fwkr-E e o
you want to send here B ki CHAF
Sareite- Typ Frainsd - Useir | Server Siates Aot pord. [EE4E
Was-pars 1234 e

et - Dy - Thoie &
ok - Bepmon- Tera |10
AL~ il - Gt |I0000

Fort- Tarkpnl - O tabs |]-|IIII|

Aacee| - Barwsion -l AR

Toarc-fnms = wiksm
Eermice-Tipe = Framed-Tesg
WhA-TF-Adidress = 03 63 L5E. 1
WRE-Pact = 4204
CHAR-Punrvord = S50 T2 3850 1k o0 300 38 00 20250 190 ¢ 105 o By e B BT D0
CRAF-Challsrgs = 12HSETA PO THES
:-z.‘-:lu.u B eas - qUEaL
L

k-1

Aermas-Aeeept
IdarirEvrec
thesniic s TR YT e Dt T AL 3 130 5 VR 5 Lk TR e DA D 0 ol
CCANUTES:

Foaned=Protecal = PP

Frusad-T7-Hatnaake = 055 255 095
I'l:'l:ud-ﬁuu't;.r-i = Hoans

Framsd-HTU « LEDAD

Framed-Ganpieasdan = Yan-Jasohaon-T0r=LF
mandizg docers-Regquest Farpec bl

santhan hecombisg-Reqask Bbart

senting Roocoaring-Eeqosst Shop

See the details of requests and replies here

9.0 builddbm

builddbm can create and update DBM format user database files (see Section 15.3 on
page 101) from flat file format user database files (see Section 15.2 on page 100). It can
also be used to print or delete the information for a single user from a DBM file.

Radiator Radius Server 79 of 124

builddbm

DBM files should be used with Radiator if you require fast authentication, but also need
to change your user database on-the-fly while Radiator is running, and you don't or
can’'t use AuthBy SQL or AuthBy FILE in Nocache mode.

Radiator will choose the ‘best’ format of DBM file available to you, depending on
which DBM modules are installed on your machindir(t: You can force it to choose a
particular format by modifying the top of builddbm and AuthDBFILE.pm)

The arguments are:

builddbm [-z] [-u] [-f flatfile] [-d user] [-] user]
[-t type]dbfile
LI 4
Delete all entries from the database before processing other commands.
* -u

Update mode. Replace user entries that already exist in the DBM file rather than
complaining.

* -f flatfile

The name of the flat file format user database to be used to populate the DBM file.
Defaults to dbfile, i.e. the name of the DBM file, without .ibeg or .dir suf-
fixes.

e -d user

Delete the entry fouser from the DBM file
e - user

Print out the entry fouser in a format that could be reimported iftoilddbm
e -t dbmtype

Forces builddbm to use a particular format of DBM file. The valuibpftypecan

be AnyDBM_Flle, NDBM_File, DB_File, GDBM_File, SDBM_File or
ODBM_File. Defaults to AnyDBM_File, which selects the best format on the host
machine.

» dbfile

The base name of the DBM files to create or use. The actual filenames will depend

on the DBM module that Perl has selected, but, it will usually be something like
dbfile.dir anddbfile.pag. Mandatory.

Examples:

Rebuild the entire DBM databasetigers.dir andusers.pag from theusers
file, clearing old entries first:

builddbm -z users
Update the Berkeley DB format database filkslb with the users in the file
users:

builddbm -u -f users -t DB_File all.db

80 of 124

Radiator Radius Server

buildsql

10.0

Print the entry associated with the user mikem in the DBMdtkf$.dir,
staff.pag

builddbm -l mikem staff

buildsql

Thebuildsgl utility creates or updates an SQL authentication table from the contents
of a Unix password file or from a (Livingston) standard Radius users file. It can also be
used to print or delete the information for a single user from an SQL authentication
table.

An SQL database should be used with Radiator if you require fast authentication, large
user populations and also need to change your user database on-the-fly while Radiator is
running, and you don’t or can't use AuthBy DBM, or AuthBy FILE in Nocache mode.

By default,buildsql connects to the SQL database specified by the -dbsource, -
dbusername and -dbauth command line flags. You must specify these flags. See
Section 21.0 on page 115 for details on how to set these flags for different database ven-
dors

By default,buildsql inserts or updates records in a table called SUBSCRIBERS, but
you can change this with a command line flag. By default, it only affects four columns
in the table: USERNAME, PASSWORD, CHECKATTR, REPLYATTR, but you can
change this with command line arguments. All other columns are unaffected by
buildsgl , so you can have arbitrarily complicated tables. You can change the names
of the columns thabuildsgl uses with command line arguments. The default names
are compatible with the default names used by the SQL authentication module.

The arguments are:

buildsql [-Z] [-u] [-d user] [- user] [-V]
-dbsource dbi:drivername:option
[-dbusername dbusername] [-dbauth auth]
[-password | -dbm | -flat]
[-tablename name]
[-username_column columnname]
[-password_column columnname]
[encryptedpassword]
[-checkattr_column columnname]
[-replyattr_column columnname] file

e -Z
Delete all user entries from the database before processing other commands.
e -u

Update mode. Replace user entries that already exist in the database rather than com:
plaining about constraint violations.

e -duser

Radiator Radius Server 81 of 124

buildsqgl

Deleteuser from the SQL database
e -l user

Print out the entry fouser in a format that could be reimported itttigildsql
* v

Print out every SQL statement being issued before its executed
e -dbsource dbi:drivername:option

Specifies the data source name of the database to connect to. Must be specified.
¢ -dbusername username

Specifies the username to use to connect to the SQL database.
¢ dbauth password

Specifies the password for dbusername. Not required for some database types.
e -password

The source files are in Unix password file format. See Section 15.4 on page 101.

e -dbm
The source files are in DB file format. See Section 15.3 on page 101.
e -t dbmtype

Forces buildsgl to use a particular format of DBM file. The valudlitypecan be
AnyDBM_Flle, NDBM_File, DB_File, GDBM_File, SDBM_File or ODBM_File.
Defaults to AnyDBM_File, which selects the best format on the host machine.

o flat

The source files are in standard radius flat file format. See Section 15.2 on page 100.
This is the default. If no input file type is specified, -flat is assumed.

e -tablename name
Specifies the name of the database table to use Defaults to SUBSCRIBERS.
e -username_column columnname

Specifies the name of the column where the user name will be stored. Defaults to
USERNAME.

e -password_column columnname

Specifies the name of the column where the passwords will be stored. Defaults to
PASSWORD.

e -checkattr_column columnname

Specifies the name of the column where the Check Items will be stored. Defaults to
CHECKATTR.

e -replyattr_column columnname

Specifies the name of the column where the Reply Items will be stored. Defaults to
REPLYATTR.

e -encryptedpassword

Handle and print all passwords as if they were encrypted. When printing passwords
with -I, the password is given with Encrypted-Password.

82 of 124 Radiator Radius Server

radacct.cgi

11.0

If neither-password or-dbm is specified, the input files are assumed to be Flat File
format. See Section 15.2 on page 100.

Examples:

Rebuild the entire SQL database from Mie/passwd file, clearing old entries
first. Connects to an Oracle database sid called “osc” as user system and password man
ager. Uses the default table and column names

buildsql -z -dbsource dbi:Oracle:osc \
-dbusername system -dbauth manager \
-password /etc/passwd
Print out the attributes for user mikem in the same database:
buildsql dbsource dbi:Oracle:osc \
-dbusername system -dbauth manager -I mikem
Delete user mikem from the same database:

buildsqgl dbsource dbi:Oracle:osc \
-dbusername system -dbauth manager -d mikem

radacct.cgi

111

The CGI scriptadacct.cgi enables you to generate usage summaries from your
accounting log files or SQL database and to drill down to reveal user and session details.
This enables you to generate billing summaries, and to investigate the history of user
activities in order to resolve service problems. This script will work with any standard
Radius accounting log file as produced by Radiator or many other Radius servers. It will
work with compressed or uncompressed detail files.

This script can also be configured so that it will show to your customers their own (and
only their own) usage details. This is called “Secure” mode

Installation

Radacct.cgi is not automatically installed dunngke install. In order to use
radacct.cgi, you must have a Web server installed that implements the Common
Gateway Interface (CGI). Most common web servers will suit, such as Apache, NCSA,
Netscape etc. Singadacct.cgi can display details for individual users, you should
normally only allow nhominated staff to run it. You can prevent unwanted people from
running CGl scripts by configuring your web server to require a password.

1. If you are running on Unix, ensure the #! line at the top of radacct.cgi specifies the
name of your perl executable.

2. If you are using flat accounting files, edit the definition of $filename in the configu-
ration variable section near the top of the file so that it refers to your most recent
Radius detail file.Hint: You might want to use a symbolic link that changes each

Radiator Radius Server 83 of 124

radacct.cgi

11.2

time a new detall file is created). If $filename has a .gz extension then $gzip_prog
will be used to uncompress it as it is read.

3. If you are using an SQL database instead of flat accounting files, uncomment and
edit DBSource, DBUsername and DBAuth in the configuration variable section near
the top of the file so it refers to the SQL database where your accounting details are
held.

4. Install radacct.cgi on a private internal web server or in a protected directory (i.e.
that requires a username and password to access it), so that only your administrators
can access it. Consult your Web server vendor’s documentation for details on how to
configure your web server for password protected directories. You should not allow
this script to be run by the general public unless you are using the Secure mode
described below.

Hint: You might want to set up a page of links to old detail files using the “filename” tag
with lines like:

<a href=localhost/cgi-bin/radacct.cgi?filename=/usr/local/
radius/detail199802>Jan 98

This will allow your administrators to easily browse through old log files. Exactly how
you do this will depend on how you decide to organize your log files

Hint: If you are installing on 1IS or some other web server on Windows or NT, you may
need to rename radacct.cgi to radacct.pl so your web server knows to run it with the perl
interpreter.

Usage

The script will generate usage summaries and reports by scanning an accounting log file
or SQL database. You will normally use it by typing the URL into your Web browser,
something like this:

http://localhost/cgi-bin/radacct.cgi

When used with flat accounting files, the default file name of the log file it will ése is
var/log/radius/detail , but you can force it to use a different file by using the
filename tag:

http://localhost/cgi-bin/radacct.cgi?filename=xxx

where xxx is the full path name of the accounting log file you wish to summarize. If you
have several accounting log files, you might want to set up a special web page with a
link to radacct.cgi for each log file.

The default report is the All Users report (see Figure 2, “All Users,” on page 85). The

All Users report shows all the users in all sessions covered by the accounting log file.
For each user, it shows the total connection time, and the total bytes and packets in and
out. You can drill down to see all the sessions for a single user by clicking on the user
name.

84 of 124

Radiator Radius Server

radacct.cgi

11.3 Secure mode

You can configure radacct.cgi so that your customers can see their own usage (but not
the usage of other users). This means that you can set up a public web page to allow cus-
tomers to review their recent usage. To install radacct.cgi in a secure mode:

1.

Edit radacct.cgi, uncomment the line $secure = 1; in the configuration variable sec-
tion near the top of the file.

Edit the definition of $filename in the configuration variable section near the top of
the file so that it refers to your most recent Radius detail fiént; You might want
to use a symbolic link that changes each time a new detalil file is created).

If you are using an SQL database instead of flat accounting files, uncomment and
edit DBSource, DBUsername and DBAuth in the configuration variable section near
the top of the file so it refers to the SQL database where your accounting details are
held.

Install radacct.cgi on your web server in a protected directory (i.e. that requires a
username and password to access it).

Configure your web server so that only your customers can run the sfiipt: {fou

might want to use the Pam Radius module for Apache to authenticate them using
radius. This has the added benefit of only allowing access to your current customers,
and they can use their normal radius password).

Test your setup to ensure that only registered customers can get access to the script
and that they see only information about themselves.

FIGURE 2.

All Users

Total time for
each user

Click here to see

all sessions for a singl

user

Fim Eim Vew G Bsewmarks Opiess Beesary Wik _-l
Sl=lbl AE|E2 8] *

Lacdmr |_lrtt|: filecalhsat foqa-banfcuducct cge

Total bytes

WSy w7 | Whafu Canl?| Destrabuns el Search| Fuapis | Safars and packets
in and out

each user

hawa parmnaraid waagn b ad a0en ©Sn Bedon dined b

fumlooalpropecia adbsin e g pa corn we deinl
B i Thas s E-
- THES= KL 10647 T] | 61
b g cag] 712 ©T k] # &l

The All Sessions for User report (see Figure 3, “All Sessions for User,” on page 86)
shows selected detail for all the sessions covered by the accounting log file. The date
shown is the date and time that the session ended. The sessions are listed in the order
they occur in the accounting log file (i.e. by the time the session ended).

Radiator Radius Server 85 of 124

radacct.cgi

FIGURE 3.

Click here to see
all the details for
a single session

N

All Sessions for User

All Sexsionms lor User

Thea rapan shrws sl e puensss for milomsiifopes coas e . ta Fedan deal s
famabpropecinH adains'op ea oo i deind.

Selected details for
a single session, one
per line

The All Records for Session report (see Figure 4, “All Records for Session,” on
page 87) shows all the details for all the records for a single session. This format is use-
ful to see in exhaustive detail all the accounting records for a single session.

86 of 124

Radiator Radius Server

radwho.cgi

FIGURE 4.

Date and time the event

occurred

All attributes and values
o

in the record

12.0

All Records for Session

Thear rapen shaws sl S rucards for Sageee- 1] OO0 o flopen. comm ot
Fadrar datadl Alp famiecdpropetnFsdnis'spes com es deind

radwho.cgi

121

If you are using an external SessionDatabase such as DBM or SQL, you can use rad-
who.cgi to examine the details of the all the current sessions. This is useful for adminis-
trators to investigate current NAS usage, and possible Simultaneous-Use problems.

Radwho.cgi is a CGI script that will display all the current sessions in an external Ses-

sion Database. See Section 6.5 on page 22, and Section 6.6 on page 25 for information
about how to set up external Session Databases.

Installation

Radwho.cgi is not automatically installed durimgke install. In order to use
radwho.cgi, you must have a Web server installed that implements the Common

Radiator Radius Server 87 of 124

radwho.cgi

12.2

Gateway Interface (CGI). Most common web servers will suit, such as Apache, NCSA,
Netscape etc. Sinecadwho.cgi can display details about individual users, you
should normally only allow nominated staff to run it. You can prevent unwanted people
from running CGlI scripts by configuring your web server to require a password.

1. If you are running on Unix, ensure the #! line at the top of radwho.cgi specifies the
name of your perl executable.

2. Edit the definition of $filename in the configuration variable section near the top of
the file so that it refers to your external DBM Session Database file. Alternatively,
you can define DBSource, DBUsername and DBAuth so that session details come
from your external SQL Session Database.

3. If you are using a DBM Session Database file, ensure that the DBM database file(s)
are readable and writable by the user that your web server runs as. Often this will
mean that the file must be read/write anybody (i.e. mode 0666 on Unix).

4. Install radwho.cgi on a private internal web server or in a protected directory (i.e.
that requires a username and password to access it), so that only your administrators
can access it. Consult your Web server vendor’s documentation for details on how to
configure your web server for password protected directories. You should not allow
this script to be run by the general public.

5. If you have an external program that can terminate a user session by communicating
with your NAS, uncomment and edit $sessionTerminateProg. This will cause rad-
who to show a hotlink for each session, allowing you to terminate the session by
clicking on the web page.

Hint: If you are installing on IIS or some other web server on Windows or NT, you may
need to rename radwho.cgi to radwho.pl so your web server knows to run it with the
perl interpreter.

Usage

The script shows details of each current session in a session database, one per line. You
will normally use it by typing the URL into your Web browser, something like this:

http://localhost/cgi-bin/radwho.cgi

You can change the sort order by clicking on the headers at the top of the table. You can
delete incorrect sessions by clicking on the “delete session” hotlink.

88 of 124

Radiator Radius Server

Check and Reply items

FIGURE 5. Typical radwho listing

2| el 2E[E|2] 8] =

Lositiese | Bittp. //Localhieat op-tin radeo. o1

Click on the |
headings to i
change the | {Current Sesdons by User - MName |
sort order
Thea rapan shawy Wl e desesen dened bp Laar-Hara
™ i 2 [0 ZH [T EEE] LT 3 AW | ; Srwrwid - Chowr [iiiets nanes
rham pi TR LTS - [(R oo e T TR D980 SRS T Y A Framed-Uhar
e desisl A1 [143 gy Mwe | TR0 EE 199 203 A2 1 A, :Fmr-:l-Ll-:-h deer |
reham - 151 10 143 B Mo L 1EIEE2E 190 SO0 A 2212 Arra Pl - Chaar 3 FITTa II'H
& |
i - L

Click here to delete sessions
that are not correct

Details about each current session, one per line

13.0 Check and Reply items

Check items and reply items are used to authenticate users when an Access-Request
message is received. Different AuthBy modules use different methods to store the check
and reply items, but regardless of the module and how the user information is stored, all
such items are used in the same way.

The general form of a check and reply item is

attribute-name = value

Attribute-name must be an attribute defined in your dictionary. Value may be sur-
rounded by double quotes (*). Valmeustbe surrounded by double quotes if it contains

a comma. If a value is surrounded by double quotes use backslash (\) to escape embed
ded double quotes. You can have binary characters in a quoted string by specifying the
octal code, preceded by a backslash. The spaces around the equals sign are optional

Multiple check or reply items can be combined on a single line if they are separated by
commas. Thus the following are all legal:

User-Password = fred
User-Password="fred"
User-Password = "fred",Service-Type = Framed-User
Reply-Message="this, has commas, and quotes\" in it"

Radiator Radius Server 89 of 124

Check and Reply items

131

13.11

Tunnel-Server-Endpoint = "\000191.165.126.240 fr:20"

The Radius attributes in check and reply itemsstbe a defined in your dictionary.

Check items

“Check items” is the name given to the Radius attributes in the Access-Request that will
be checked before the user will be granted an Access-Accept. All the check items for a
user will be checked before the user will be granted an Access-Accept. If any check
item is not satisfied the user will be denied access. You can have multiple check items
for the same attribute.

These check items can also be used in the request selection expression in a <Handler>
clause (see Section 6.12 on page 30).

You will usually use this to limit the conditions under which a user will be permitted to
log on to your system. You will usually want to have a User-Password or Encrypted-
Password, and you may also want to limit access via certain NASs, or at certain times.
You can use any Radius attribute as a check item, and there are also some special
attributes that are handled within Radiator in order to provide extra ways of controlling
user access.

Since different brands and models of NAS implement different subsets of the Radius
specification, it is not possible here to describe all the things you can configure in your
NAS with reply items. Refer to your NAS vendor’s documentation.

The following check items are supported by Radiator:

User-Password, Password

A (usually) plaintext password. Passes only if the given password matches that sent in
the Access-Request. If CHAP-Password attribute appears in the request then CHAP
authentication will be attempted. CHAP authentication is only supported with plaintext
passwords. You may user either Password or User-Password as the attribute name. The
effect is the same

User-Password can be in a number of formats, not necessarily in plaintext. Radiator
looks for some special format passwords and interprets them as special encryptions. The
following formats are supported, along with example versions of the password “fred”

e Standard Unix crypt.This format is also compatible with Unix password encryption
as used in Netscape LDAP server. Passwords starting with a leading “{crypt}” are
interpreted as a standard Unix crypt password.

User-Password = {crypt}1xMKcOGIVUNbE

e Linux MD5 password encryption. Passwords starting with “$1” are interpreted as
encrypted with Linux MD5 password encryption.

User-Password = 1cTpht$Obu9PLSMst1TDou.mN5bk0

90 of 124

Radiator Radius Server

Check and Reply items

13.1.2

13.1.3

13.1.4

13.15

* Netscape SHA password encryption as used in Netscape LDAP server. Passwords
starting with “SHA” or “SSHA” are interpreted as being encrypted with Netscape
SHA encryption. (Requires Perl SHA-1.2.tar.gz module or later).

User-Password = {SHA}ODPiKuNIrrVmD8IUCuw1hQxNgZc=
* Plaintext. Any other format is interpreted as a plain text password.

User-Password = fred

Encrypted-Password

A crypt(3) encrypted password. Passes only if the password sent in the Access-Request
matches the given encrypted password. CHAP authentication cannot be performed with
an Encrypted-Password check item.

Encrypted-Password = 1xXMKcOGIVUNbE

Realm
Checks that the realm in the login name matches. The realm is the part following the @
in the user name. You can use either exact match, or a regular expression.

Realm = open.com.au
Expiration

A date in the form Dec 08 1998. Passes only if the current date is prior to the given date.
Expiration = Jan 02 1999

Auth-Type

Auth-Type triggers special behaviour for authenticating the user. The possible values
are:

* Reject. Any access request will always be rejected. This is useful for temporarily
disabling logins for a given user.

* Reject:message. Same as for Reject, except that the message (which can be any
string) will be sent back to the user in a Reply-Message. This is useful for telling a
user why their login has been rejected.

¢ Ignore. Any access request will always be ignored (i.e. no reply will be sent back to
the NAS). This is sometimes useful for triggering special behaviour in cascaded
AuthBy clauses.

* Anything else. Any other word specifies an Identifier in an AuthBy clause which
will used to authenticate the user. The name is matched with the name specified in
the ldentifier parameter in an AuthBy clause. You can name any other type of
AuthBy module, be it SQL, RADIUS, UNIX etc. Specifying Auth-Type for a user
causes the authentication to be cascaded to another authentication module. You can
cascade authentications like this to any arbitrary depth.

The Auth-Type check item is most useful when you want to have check items and/or
reply items, but also want to authenticate with native Unix or NT passwords.

Radiator Radius Server 91 of 124

Check and Reply items

13.1.6

13.1.7

13.1.8

13.1.9

Checks all users using the authentication method that has the identifier “System”
DEFAULT Auth-Type = System

If you want to temporarily disable logins for a single user:

username Auth-Type = Reject

This one rejects the user and tells them why:

username Auth-Type = “Reject:you did not pay your bill”

This will first authenticate with the Identifier System, and if they are also in the group
“staticip”, they will continue to be authenticated with the AuthBy clause that has the
Identifier “statics”.

DEFAULT Auth-Type=System, Group=staticip, Auth-Type=statics

Group

The meaning of Group depends on the type of module that is doing the authentication:
For UNIX, it means whether the user is a member of the group as defined by the /etc/
group file. For NT, it means whether the user is a member the Local Group on the host
where Radiator is running. For other AuthBy modules, it has no meaning, and will
always cause a rejection.

Group = wheel

Block-Logon-From

Specifies a time in the format 9:00 am or 15:22. Attempts to authenticate after this time
of day will fail. If Block-Logon-To is also specified for a later time of day, access is
blocked between those times. The time of day that is usedlmcti¢ime on the host
where Radiator is running. Block-Logon-From is superseded by the Time check item
(see Section 13.1.11 on page 93) and will not be supported in the future.

Block-Logon-To

Specifies a time in the format 9:00 am or 15:22. Attempts to authenticate before this
time of day will fail. If Block-Logon-From is also specified for an earlier time of day,
access is blocked between those times. The time of day that is uselbéaktiene on

the host where Radiator is running. Block-Logon-From is superseded by the Time check
item (see Section 13.1.11 on page 93) and will not be supported in the future.

Block-Logon-From = 9:00 am,
Block-Logon-To = 5.00 pm

Prefix

This check item checks for the presence of a certain prefix in the user name. If it is not
present the check item will fail. If it is present, it will be removed from the user name
and accepted. This is most useful in DEFAULT items to handle different variations of
the same users name, but with different reply attributes.

92 of 124

Radiator Radius Server

Check and Reply items

13.1.10

13.1.11

In this example, there might be a user “mikem” in the System authentication method.
These user entries will allow Pmikem to log in as a PPP user, and Smikem to login as a
Slip user:

DEFAULT Prefix = P, Auth-Type = System
Service-Type = Framed-User,
Framed-Protocol = PPP,
Framed-IP-Address = 255.255.255.254,
Framed-MTU = 1500

DEFAULT Prefix = S, Auth-Type = System
Service-Type = Framed-User,
Framed-Protocol = SLIP,
Framed-IP-Address = 255.255.255.254,
Framed-Compression = None

Suffix

This check item is very similar to Prefix above, but checks for the presence of a certain
suffix in the user name. If it is not present the check item will fail. If it is present, it will

be removed from the user name and accepted. This is most useful in DEFAULT items to
handle different variations of the same users name, but with different reply attributes.

In this example, there might be a user “mikem” in the System authentication method.
These user entries will allow mikem.ppp to log in as a PPP user, and mikem.slip to login
as a Slip user:

DEFAULT Suffix = .ppp, Auth-Type = System
Service-Type = Framed-User,
Framed-Protocol = PPP,
Framed-IP-Address = 255.255.255.254,
Framed-MTU = 1500

DEFAULT Suffix = .slip, Auth-Type = System
Service-Type = Framed-User,
Framed-Protocol = SLIP,
Framed-IP-Address = 255.255.255.254,
Framed-Compression = None

Time

This check item allows you to specify which times of day and which days of the week
the user is allowed to log on. The Time check is preferred to the Block-Logon-From and
Block-Logon-To check items, which will not be supported in the future.

The format consists of day specifiers followed by hours intervals. Multiple day specifi-
cations are permitted with multiple values separated by commas (if you use commas,
the entire check item must be enclosed with double quotes (*). Authentication will be
permitted if the current local time on the Radiator server is within at least one of the
time intervals specified.

Day specifiers are Mo, Tu, We, Th, Fr, Sa, Su for the days of the week. Wk means Mo-
Fr and Al means any day. Hours intervals are specified as HHMM-HHMM. Typical
examples are:

Time = "MoTuWe0800-1400,Wk2200-0400"
Time = "Al1800-0600,Wk1000-1330"

Radiator Radius Server 93 of 124

Check and Reply items

13.1.12

13.1.13

13.1.14

13.1.15

Simultaneous-Use

Specifies the maximum number of simultaneous sessions permitted for this user. Radia-
tor keeps track of the number of current sessions for a user by counting the Accounting
Start and Stop requests received for that user. The value of this check item is either an
integeror the name of a file that contains an integer. You can use any of the special for-
matting characters in the file name. The file will be reread for each authentication: it is
not cached, so using a file name can have a slight impact om performance.

Hint: you can set the maximum number of sessiomlidhe users in a realm by using
the Realm MaxSessions parameter.

Simultaneous-Use = 1

Connect-Rate

Specifies the maximum connection speed that this user is permitted to use. Uses the
Connect-Info attribute in the request to determine the speed the user is requesting. Note:
not all NASs send Connect-Info in Access Requests. Check with your NAS vendor’s
documentation.

Connect-Rate = 28800

NAS-Address-Port-List

Specifies the name of a file that contains a list of permitted NAS address/port combina-
tions. See Section 15.7 on page 102 for the Portlist file format. The filename can contain

any of the special file name characters. The contents of the file are read at most once,

and the port list is cached inside Radiator. If the user is not attempting to log in on one

of the permitted address/port combinations, they will be rejected.

NAS-Address-Port-List %D/portlist

Hint: You can limit users to a particular NAS, irrespective of the port by using the NAS-
IP-Address check item, possibly with a regular expression.

Hint: You can limit users to a particular port or set of ports on all NASs by using the
NAS-Port check item, possibly with a regular expression.

Any other attribute defined in your dictionary

Checking of all other attributes passes only if the corresponding attribute exists in the
request and matches the value specified for the check item.

Radiator allows check items to be specified either as an exact match or as a Perl regular
expression (regexp). Radiator regards check items whose value is surrounded with
slashes ('/) as a regular expression. Anything else is regarded as an exact match.

e Exact match

The check item will pass only if there is an exact match. The comparison is case sensi-
tive. Radiator will look for an exact match if the value to be matched is not surrounded
by slashes.

94 of 124

Radiator Radius Server

Check and Reply items

13.2

NAS-IP-Address = 203.63.200.5
Caller-Id = 121284

* Perl Regular expression

If the check item is surrounded by slashes (‘/’), it is regarded as a Perl regular expres-
sion, and Perl is used to test whether the value of the attribute in the request matches the
regexp. The expression modifiers ‘i’ and X’ are also permitted.

Perl regular expressions give you an enormous amount of power to control the condi-
tions under which a user can log in. The first example below only matches if the user
logs in from the phone numbers 95980981, 95980982, 95980983 or 95980984. The sec-
ond example only matches of they log into a port number with one digit (i.e. ports 1-9).

Caller-Id = /9598098(1|2|3|4)/
NAS-Port = /MN\d$/

Hint: Perl regexps are very powerful, but they also take some getting used to. You
should use them carefully, and test to make sure they really do what you want. Consult
some Perl manuals or a Perl guru for tips on writing regexps.

Hint: You can use the ‘i’ and ‘x’ pattern modifiers to get case-insensitive or extended
expressions like this, to match a Class attribute set to “myclass” without regard to case.

Class = /myclassl/i

Hint: You can set up “negative” matches (ie that only match of the checkttisequal
to some string) by using Perl negative lookahead assertions in a regexp. For example,
this check item will match all Service-Typesceptfor Framed-User:

Service-Type = /*(?!Framed-User)/

Reply items

“Reply items” are Radius attributes that are used to configure the Terminal Server or
NAS when a user is successfully authenticated.

In order to determine what Radius attributes you need to configure your NAS, you will
need to consult your NAS vendor’s documentation. Some Radius attributes are common
to all NASs, and can be used with any NAS, while some are specific to a particular ven-
dor or model of NAS. All reply items that you useistbe defined in your dictionary.

If the user is granted access, all the reply items will be returned in the Access-Accept
message to the NAS. This is usually used to configure the NAS in the correct way for
that user. Since different brands and models of NAS implement different subsets of the
radius specification, it is not possible here to describe all the things you can configure in
your NAS with reply items. Refer to your NAS vendor’'s documentation. Here is a typi-
cal example to configure a NAS for a dialup PPP session:

Framed-Protocol = PPP,

Framed-IP-Netmask = 255.255.255.255,
Framed-Routing = None,

Framed-MTU = 1500,

Framed-Compression = Van-Jacobson-TCP-IP

Radiator Radius Server 95 of 124

Rewriting user names

13.2.1

13.2.2

13.2.3

13.2.4

13.2.5

14.0

Some reply items are given special treatment:

Framed-Group

The reply attribute is used in conjunction with FramedGroupBaseAddress in order to
allocate an IP address for the user and return it in a Framed-IP-Address attribute. See
Section 6.4.7 on page 20 for more details

Framed-Group =1

Ascend-Send-Secret
Causes the value to be encrypted with the Client’'s shared secret and returned to the Cli-
ent.

Ascend-Send-Secret = mysecret

Tunnel-Password

Causes the password to be encrypted with the Client’s shared secret according to draft-
ietf-radius-tunnel-auth-06.txt. The Tunnel-Password tag is set to 0. This is used by
Ascend and other NASs for managing VPN tunnels.

Tunnel-Password = yourtunnelpassword

Fall-Through
This attribute is not actually returned to the NAS. Its presence causes Radiator to con-
tinue looking for a match with the next DEFAULT user name.

Fall-Through = yes

Any other attribute defined in your dictionary
Any other attribute will be returned to the client in the reply message. All attrilmtess$
be defined in your dictionary.

Framed-Protocol = PPP,

Framed-IP-Netmask = 255.255.255.0,
Framed-Routing = None,Framed-MTU = 1500,
Framed-Compression = Van-Jacobson-TCP-IP

Rewriting user names

You can change the User-Name attribute in each request by using the RewriteUsername
parameter. This allows you to apply separate rewriting rules to the User-Name:

* In every request received by Radiator (see Section 6.3.19 on page 16). This occurs
prior to Client or Realm rewrites.

* In every request handled by a Client clause (see Section 6.4.8 on page 21). This
occurs after global rewrites, but prior to Realm rewrites.

* In every request handled by a Realm clause (see Section 6.12.1 on page 32). This
occurs after global and Client rewrites.

* Inevery request handled by an <AuthBy GROUP> clause. This occurs before any of
the <AuthBy> clauses in the group are called.

96 of 124

Radiator Radius Server

File formats

The parameter is a Perl substitution regular expression that is applied to the User-Name
attribute in the request. If you don’t know how to write Perl substitution regexps, you
should consult a Perl programmer. At Trace level 4, you can see the result of each sepa
rate rewrite for debugging purposes.

You can have any number of RewriteUsername parameters. The rewrites will be applied
to the user name in the same order that they appear in the configuration file.

This feature can be very useful in a variety of circumstances, for example

* Strip the realm name from the user name. This is handy if your user database con-
tains only the user names without the realm extension (i.e. “fred” instead of
“fred@yourdomain.com”)

Strip realm
RewriteUsername s/ ([*@]+).*/$1/

¢ Convert Microsoft or other style user names to the user@realm form that Radiator
uses

Convert a MSN realm/user into user@realm
RewriteUsername s/)V(*)/$2\@$1/

* Force all user names to be lower case or upper case

Translate all uppercase to lowercase
RewriteUsername tr/A-Z/a-z/

15.0 File formats
15.1 Dictionary File

The dictionary file defines easy to read names for the attributes and values used in
Radius messages. It defines how Radius attribute numbers map to readable attribute
names, and how Radius value numbers map to readable value names. The dictionary
also defines the type of data that each attribute can hold.
The dictionary file is an ASCII text file. Each definition occupies one line. Lines begin-
ning with ‘#" and blank lines are ignored. There are 3 types of definition lines:

15.1.1 ATTRIBUTE

This defines the name, Radius attribute number and type for an attribute.
ATTRIBUTE Service-Type 6 integer

ATTRIBUTE is the keyword that says this is an attribute definition. Service-Type is the
name of the attribute: the string that will be used as the attribute name when printing the
attribute and when setting attributes in the user database. 6 is the standard Radius
attribute number for the attribute (see RFP 2138), and integer is the data type for this
attribute. The supported data types are when you assign values to attributes in the user
database are:

e string An ASCII string of up to 253 bytes. trailing NULs will be stripped

Radiator Radius Server 97 of 124

File formats

151.2

151.3

15.1.4

* integer A decimal integer.

* date A date as an integer number of seconds since 00:00:00 UTC Jan 1 1970.
e ipaddr An IP address in the formaa.bbb.ccc.ddd

* binary Binary data

¢ abinary An Ascend filter, using the special Ascend filer definition syntax

* data Binary data

If you redefine an ATTRIBUTE by defining a new name for an previously defined
attribute number, the new definition will silently replace the old one.

VALUE

This defines a symbolic name for an integer type attribute. When setting the value of an
integer attribute in a check or reply item, you can use the symbolic name instead of the
raw integer.

VALUE Service-Type Login-User 1

VALUE is a keyword that says this is a value definition. Service-Type means that this is
a definition of a value for the Service-Type attribute (which should be of type integer).
Login-User is the symbolic name for the value, and 1 is the value that Login-User trans-
lates to.

If you redefine a VALUE by defining a new name for a previously defined value num-
ber, the new definition will silently replace the old one.

VENDORATTR

This defines a vendor-specific attribute. Radius defines a special attribute number 26
that can be used to hold any vendor defined data type. This allows NAS vendors to add
their own NAS-specific codes.

VENDORATTR 9 cisco-avpair 1 string
VENDORATTR is a keyword that says this is a vendor-specific attribute definition. 9 is
the SMI Network Management Private Enterprise Code of the vendor (Cisco in this
example). cisco-avpair is the symbolic name for the attribute, and string is the data type.

The same data types as for ATTRIBUTE are supported. Radiator supports both hex and
decimal attribute numbers in VENDORATTR.

After an integer VENDORATTR is defined, you can have VALUE definitions in the
same format as for other ATTRIBUTES.

If you redefine a VENDORATTR by defining a new name for an previously defined
vendor attribute number, the new definition will silently replace the old one.

Available dictionaries

Radiator comes with a number of dictionaries:

98 of 124

Radiator Radius Server

File formats

e dictionary . The is the normal and default one. It merges attribute definitions
from several sources, and should be satisfactory for most users.

¢ dictionary.ascend . This is the standard Ascend dictionary, which you should
use if you are using Ascends.
¢ dictionary.ascend2 . This is a dictionary for recent model Ascends. Ascend

have recently stopped using commandeered standard Radius attributes for their own
use, and are now using Vendor-Specific attributes. Use this dictionary if you get
error messages from Radiator like:

Mon Mar 22 23:28:02 1999: ERR: Attribute number 125
(vendor 529) is not defined in your dictionary

(Vendor 529 is Ascend)

* dictionary.cisco . This is a standard Cisco dictionary. You should never need
to use this, as all its values aredictionary |, but its there in case you want to use
it.

* dictionary.livingston . This is the standard Livingston dictionary. You
should never need to use this, as all its values are in dictionary, but its there in case
you want to use it.

¢ dictionary.usr . This is a modified USR/3COM dictionary suitable for use
with USR NASs (USR has been taken over by 3COM).

You should be very careful if you select the Cisco or Ascend dictionaries, as they both
define unusual names for the values of the Service-Type attribute (amongst others). The
names they use are inconsistent with the names in the example users file and the defaults
for radpwtst . On balance, you might be better off using the standard dictionary. If

you really want to use those dictionaries, yaustbe sure that your user database and
options for radpwtst are using the value names from the dictionary you choose. Failure
to do this can cause difficult to find authentication failures.

Your dictionarymusthave entries for at least the following attributes, which are referred
to by name in theadiusd code.

¢ User-Name

* User-Password

* Encrypted-Password
¢ Acct-Delay-Time

* Any other attributes that are required by your AuthBy SQL configuration (if any) or
the check and reply items your user database.

Choosing which dictionary to use takes some thought. Here are some guidelines. Wher-
ever possible, use the generic dictionary: it will work with the vast majority of cases.If
you are operating with NASs from only one vendor, choose the standard dictionary, or
dictionary for that vendor. If you are operating in a mixed environment, use the default
dictionary. If that does not work for you, try concatenating the dictionaries for the ven-
dors you are using into one big dictionary. You are of course free to modify any of the
dictionaries to add attributes or values that are missing for your particular NAS.

Radiator Radius Server 99 of 124

File formats

15.2

Whichever dictionary you choose to use, you should place it in the directory where
radiusd expects to find it before startingdiusd . You should also be careful to
specify the same dictionary tadpwtst with the-dictionary argument if you
use it for testing.

Flat file user database

Flat file user databases are used to list all the legitimate users for the AuthBy FILE mod-
ule. You can also use Flat file user databases as input twildelbm andbuildsqgl

utility to create a DBM user database. Seaugers file in the Radiator distribution

for an example.

Flat file user databases are ASCII text files containing zero or more user definitions.
Lines beginning with ‘#" are ignored. Each user definition is one or more lines. The first
line must start with the user name in the first column. Subsequent lines for the user must
have begin with white space.

The user name must be followed by some white space, followed by zero or more
‘check’ items. Each check item is in the form “Attribute = Value”, and it defines a

Radius attribute that will be checked in Access-Requests before the user will be authen-
ticated. Multiple check items are separated by commas (‘,"). There must be no comma
after the last check item in the line. Values may optionally be surrounded by double
guotes, which are ignored. See Section 13.0 on page 89 for more details on check items.

The second and subsequent lines are ‘reply’ items. Each line must commence with
white space. Each reply item is in the form “Attribute = Value”, and it defines a Radius
attribute that will be returned to the NAS if the authentication succeeds. Such reply
items will generally be used to configure the NAS for the user. Each reply item must
have a trailing comma (*,') except the last item on the last line. Values may optionally be
surrounded by double quotes, which are ignored.

In the example given in Figure 6 on page 100, if the user mikem is granted access, their
modem will be configured for Framed-Protocol of PPP, and IP Netmask of
255.255.255.0, Framed-Routing of None and a Framed-MTU of 1500.

FIGURE 6.

Typical user entry in a flat file user database

Check items No comma
User name at end of
i check item§\

(mikem }J@r-Password ="fred", Service-Type = Framed-User ‘)
Framed-Protocol = PPP, Framed-IP-Netmask = 255.255.255.0 \
Framed-Routing = None, Framed-MTU = 1500 /

white space /
Reply items No comma at end of last
reply item

100 of 124

Radiator Radius Server

File formats

15.3

154

155

DBM user database

DBM user database file is in similar format to the DBM files supported by Merit and
other Radius servers. Entries are hashed by username, which is unique. Each user entry
consists of two strings separated by newline characters. The first line is a list of comma
separated Check items in the form “Attribute = Value”. The second line is a list of
comma separated Reply items in the form “Attribute = Value”. During authentication,

the check and reply items are used in exactly the same way as for a Flat file user data-
base (see Section 13.0 on page 89).

Radiator will choose the ‘best’ format of DBM file available to you, depending on
which DBM modules are installed on your machindir(t: You can force it to choose a
particular format by modifying the top of AuthDBFILE.pm and builddbm)

You can convert a Flat file user database directly into a DBM user database with
builddbm utility, and you can also udauilddbm to print the attributes for a particu-
lar user. You can convert a DBM user database into an SQL database Wwitiidhe

sql utility.

A DBM database can have multiple DEFAULT users. During authentication, if no user
name is found in the DBM database, the DEFAULT users will be tried in the order that
they appeared in the input file, until a match is foufethnical Note : when the

DBM file is built from a flat file, the first DEFAULT user encountered is added to the
DBM file with the name DEFAULT. The seconds and subsequent DEFAULT entries are
added as DEFAULT1, DEFAULT? etc. Therefore the uniqueness and order of
DEFAULT users in the database is guaranteed.

Unix password file

A Unix password file as understood by the AuthBy UNIX module is an ASCII file con-
sisting of one line per user. There are at least 2 colon (:) separated fields per line. The
first field is the user name, and the second is the crypt(3) encrypted password. The third
and subsequent fields (if they are present) are ignored.

It will be recognized that this description fits the standard Unix password file format,

and Radiator will work withetc/password on Unix implementations that do not

use a password shadow file. It will work witktc/shadow on Unix implementations

that do use a password shadow file (Radiator will need to run as root to get read access
to /etc/shadow).

Accounting log file

The accounting log file is used to store the details of every Accounting-Request received
for a realm if the AcctLogFileName parameter is defined for the realm. It is an ASCII
text file with each entry occupying one or more lines and followed by a blank line. The
log file format is identical to the format used by Livingston and other Radius servers.
The first line gives the date and time the request was received by the server. The subse-
quent lines give the values for every attribute in the request. Every Accounting-Request,
regardless of Acct-Status-Type is stored in the log file.

Radiator Radius Server 101 of 124

File formats

Date and time received

(_Mon Feb 9 22:07:20 1998)
Ser-Name = 'mikem

Service-Type = Framed-User
NAS-IP-Address = 203.63.154.1
NAS-Port = 1234
Acct-Status-Type = Stop
Acct-Delay-Time = 0
Acct-Session-Time = 1000
Acct-Input-Octets = 20000
Acct-Output-Octets = 30000
Acct-Session-1d = “00001234”

String type attributes are quoted

Every attribute in the request

FIGURE 7.

15.6

15.7

Typical accounting log file entry

Password log file

The Password log file is useful for your help desk to diagnose user logon problems. It is
only written if you define PasswordLogFileName for a Realm. It is an ASCII text file
containing the results of password checks, one check per line. Each line contains 5
colon (") separated fields:

time:seconds:user:submitted_password:correct_password:result

The time is the full date time string, seconds is the number of seconds since January 1
1970 (Unix epoch). Result is the word “PASS” or “FAIL". For example:

Mon Jun 29 12:24:21 1999:899087061:mikem:fredd:fred:FAIL
Mon Jun 29 12:24:38 1999:899087078:mikem:fred:fred:PASS
Mon Jun 29 12:38:53 1999:899087933:mikem:fred:fred:PASS

The file is opened, written and closed for each entry, so it can be safely rotated at any
time.

Portlist file

A portlist file contains a list of permitted NAS address/port combinations that are per-
mitted for a user or group of users. It is used by the NAS-Address-Port-List check item.
Itis an ASCII file, with two white space separated fields. The first field is the NAS
address (either as a DNS name or IP address). The second field contains the lower and
upper permitted port numbers in the format “lowport-highport”. Blank lines and lines
starting with hash (‘#') are ignored. You can have any number of entries for each NAS,
and any number of NASs.

102 of 124

Radiator Radius Server

High availability for radiusd

16.0

Technical Note: iPASS roaming users do not get their real NAS Address sent to Radia-
tor. Radiator considers these to be address 0.0.0.0 for the purposes of NAS-Address-
Port-List.

Users can log into ports 1-10 and 21-30 inclusive
#o0n 10.1.1.1 or into ports 100 to 115 inclusive on
#10.1.1.2, or into ports 16 to 20 inclusive on

mynas.domain.com

10.1.1.1 1-10

10.1.1.1 21-30

10.1.1.2 100-115

mynas.domain.com 16-20

For iPASS roaming:

0.0.0.0 0-1000

High availability for radiusd

16.1

In a typical ISP, your radius server is an important part of your customer service, and it
is important that it is available all the time. Although the Radiator radius server is very
reliable, it is possible that it might be accidentally killed, or that a system problem could
cause it to exit. You should make provisions for Radiator to be started automatically at
system boot time, and make sure it is available all the time.

In a Unix environment, there are 3 ways you can achieve this. The preferred method is
to start and restart radiusd with restartWrapper, but you may prefer to start and restart it
with inetd(1) or init. On NT, you can run Radiator as a system service.

Using restartWrapper

In a Unix environment, you can arrange fadiusd (or any other program, for that
matter) to be restarted automatically if it exits unexpectedly by usingdteet-

Wrapper script.restartWrapper is included in thgoodies directory of the
Radiator distribution. It is not installed automatically, so if you want to use it, you will
probably want to copy it to your local binaries directory. Radiator must be run in the
foreground with the Foreground parameter or the -foreground argument (see
Section 6.3.1 on page 12).

You will probably want to put a call to restartWrapper in your Unix system boot script
so thatradiusd is started automatically at boot time by restartWrapper. This will usu-
ally involve modifying /etc/rc.local or adding a new script to /etc/rc2.d, depending on

what type of Unix you are running. See your system documentation for more details

about system start-up scripts.

The arguments are:

restartWrapper [-h] [-delay n] [-mail address]
[-sendmail path-to-sendmail]
“command to run”

e -h
Print usage help message.

Radiator Radius Server 103 of 124

High availability for radiusd

16.2

16.3

e -delayn
Number of seconds to wait before restarting the command. Defaults to 10 seconds.
* -mail address

The email address to send a message to when the command exits. By default, no
email is sent.

¢ -sendmail path-to-sendmail

Specifies an alternate path to the sendmail program which will be used to send email
if the -mail argument is specified. Defaults tesv/lib/sendmail

e “command to run”

This is the complete command that is to be run, including arguments if any. You
should enclose the entire command in double quotes, especially if the command con-
tains arguments that might be mistaken for arguments to restartWrapper. You will
probably want to specify the full path to the command.

Examples:

Run radiusd with a specified config file. If it stops, send email to mikem@open.com.au
and wait 2 seconds before restarting it.

restartWrapper -mail mikem@open.com.au -delay 2 \
“/bin/radiusd -config_file /etc/radius.cfg \
-foreground”

Hint: make sure that Radiator is running in “foreground” mode, either with -foreground
in the command line arguments, or with Foreground the configuration file

Using init
On Unix systems that support it, you can start and restart Radiator automatically with
init(1). Add something like this téetc/inittab

ra:2345:respawn:/usr/bin/radiusd -config_file \
/etc/raddb/radius.cfg -foreground

Hint: make sure that Radiator is running in “foreground” mode, either with -foreground
in the command line arguments, or with Foreground the configuration file.

Using inetd

If you don’t wish to useestartWrapper or init, you can instead arrange for the
Unix inetd (1) superserver to starddiusd the first time it is required (and to restart
it if it stops unexpectedly). In order to do this, you must add a new line ioetice
configuration file (usuallyetc/inetd.conf) . You must also ensure that the radius
port number you wish to use is configured into/#te/services file. You must

also ensure that Radiator is configured to run in the foreground with the Foreground
parameter or the -foreground argument (see Section 6.3.1 on page 12).

The inetd line you add will look something like this (the line has been wrapped due to
its length in this example):

104 of 124

Radiator Radius Server

High availability for radiusd

16.4

Start Radiator on demand

radius dgram udp wait root /bin/radiusd radiusd
-config_file /etc/radius.cfg
-foreground

After changing /etc/inetd.conf, you will need to tell inetd to reread its configuration file
by sending it a HUP signal with something like

kill -HUP pid-of-inetd

Whenever a radius request is receivedradiilisd is not already runningnetd

will automatically startadiusd . If radiusd stops some time later, inetdll

restart it when the next request arrives. For more details on using and configuring inetd,
consult your Unix vendor’s documentation.

Hint: make sure that Radiator is running in “foreground” mode, either with -foreground
in the command line arguments, or with Foreground the configuration file

As a System Service on NT

On Windows NT, you can arrange for a program to be started automatically at boot
time, and to continue running no matter who is logged in. This is called a “System Ser-
vice” or just a Service. To run Radiator as a service:

1. Acquire SRVANY from the Windows NT Resource Kit. You will need
INSTSRV.EXE and SRVANY.EXE.

2. Install INSTSRV.EXE and SRVANY.EXE on your NT disk (not on a remote share).
Typically in c\RESKIT.

3. Unpack Radiator onto your NT disk (not on a remote share). We will assume in this
example you have unpacked it to C:\Radiator but you can put it anywhere you like.

4. Configure Radiator by editing or creating your own radius.cfg. You should configure
and test Radiator before proceeding with creating a Service. We assume for this
example that you will put the configuration file in C:\Radiator\radius.cfg, but you
can put it anywhere you like.

5. Install Radiator with make install. If you don’t have a working make then just copy
the entire Radius directory from the Radiator distribution to the Perl site library
directory (usually c:\perl\site, or C:\perl\lib\site).

6. Ensure that all filename paths in the Radiator configuration file are absolute (i.e. use
things like Filename %D/users, instead of ./users).

7. Create a service for Radiator. This will create a service that will run SRVANY.EXE
at start-up. SRVANY will then use the information you put in the registry in later
steps to find Perl and run Radiator:

INSTSRV.EXE radiator path \SRVANY.EXE

Wherepathis the full path to the place you installed SRVANY.EXE (i.e., C:\\RES-
KIT)

8. You must now edit the Registry to tell SRVANY which application to run. Run the
Registry Editor (Regedt32.exe) and locate the following subkey:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\radiator

Radiator Radius Server 105 of 124

Adding custom AuthBy modules

17.0

9. Create a new key in radiator called Parameters with Edit->New->Key
10. Select the new Parameters sub-key, create a new string value in Parameters with
Edit->New->String Value. Give it the name “Application”

11. Edit the new Application string value to be the full command name required to run
Radiator. Something like:

C:\perl\5.00502\bin\perl.exe C:\Radiator\radiusd -config_file
C:\Radiator\radius.cfg

12. Exit the Registry Editor.

13. You can now start the “radiator” service manually using the Services application in
the Control Panel. Check that its working OK.

14.Restart your NT machine. Radiator should now start automatically. It might take a
minute or two before all NT services get started at boot time.

For further information, see “HOWTO: Create a User-Defined Service” at http://sup-
port.microsoft.com/support/kb/articles/Q137/8/90.asp.

Hint: If you cant get hold of SRVANY, some people have had success with FireDaemon
(http://www.formida.com.au/firedaemon/) as an alternative NT Service installer.

Hint: You can only expect Radiator to run successfully as a service if it will run prop-
erly using the same command line that you enter in item 11 above. Try running your
command line from the root directory of the C: drive. Since an NT service has no “cur-
rent directory” or “Current drive”, you must be very sure that your radiator configura-
tion file contains no “relative” file names. Every file name mentioned must be a fully
qualified path name, including the drive name, eg:

DbDir C:\radiator

Adding custom AuthBy modules

Radiator provides an easy way of plugging in and integrating additional custom AuthBy
modules. This allows you to use Radiator to authenticate from and store accounting
information to other databases and storage types not currently supported by Radiator.
You will need to be a competent Perl programmer in order to implement custom AuthBy
modules.

Custom modules are usually written in Perl. They are automatically loaded when a
matching <AuthBY ...> clause is read in the configuration file. Details on how to load,
configure and implement a custom AuthBy module are described in this section.

There is a simple AuthBy module called AuthTEST.pm included in the Radius direc-
tory. It implements the <AuthBy TEST> clause, and would be a good starting point if
you want to write your own custom AuthBy module. You should copy it to a new name
and modify the copy to suit your needs.

106 of 124

Radiator Radius Server

Adding custom AuthBy modules

17.1

17.2

Loading and configuring

When radiusd sees an <AuthBy XYZ> clause while parsing a Realm or Handler, it will
load the file Radius/AuthXYZ.pm with a Perl require. AuthXYZ.pm is expected to be a
Perl package that implements the classlius::AuthXYZ. Realm.pm will then
instantiate a new Radius::AuthXYZ by calling the constructor with
Radius::AuthXYZ->new($file) . The constructor is expected to create an
instance of Rdius::AuthXYZ that can handle all the requests for a realm.

The constructor is passed a fileharféfile | which is the configuration file being cur-
rently read. The constructor is expected to configure its instance from lines read from
the configuration file up until it sees a </AuthBy> line. This is made very easy by the
Radius::Configurable class, which your AuthBy module should inherit from.

If the Radius::AuthXYZ constructor fails, it is expected to return undef.

Handling Requests

After construction and initialization, your instance will be called upon to handle

requests that are sent to it. For each request received, the Handler.pm module will call
($result, $reason) Radius::AuthXYZ->handle_request($p, $rp) , where

$p is a reference to the Radius::Radius packet received from the client, and $rp is an
empty reply packet, ready for you to fill. Client.pm and Handler.pm will filter out dupli-
cate requests, requests from unknown clients and requests with bad authenticators, so
your handle_request will only be called for new, good requests from known clients. The
contents of the request will have been unpacked into the Radius::Radius instance passed
in as $p, so you can immediately start examining attributes and doing things.

handle_request returns an array. The first element iesult code, and the sec-
ond is an optionaleason message.

The result code frorhandle_request will indicate whether Handler.pm should
automatically send the reply to the original requester:

* If handle_request returns $main::ACCEPT, Handler.pm will send back $rp as
an accept message appropriate to the type of request received (i.e. it will turn $rp
into an Access-Accept if the original request was an Access-Request). IN the case of
Accounting-request, this is the only result code that will cause a reply to be sent
back.

e If handle_request returns $main::REJECT, Handler.pm will send back $rp as a
reject message appropriate to the type of request received (i.e. it will turn $rp into an
Access-Reject if the original request was an Access-Request). In this ceese the
son message should be supplied.

* If handle_request returns $main::CHALLENGE, Handler.pm will send back
$rp as a Access-Challenge message.

* If handle_request returns $main::IGNORE, Handler.pm will not send any
reply back to the originating client. You should only use this if the request is to be
completely ignored, or if your module undertakes to send its own reply some time in
the future. If the Handler or Realm has more than one AuthBy handler module spec-
ified, it will continue calling handlers in the order in which they were specified until

Radiator Radius Server 107 of 124

Adding custom AuthBy modules

17.3

17.4

one returns something other than $main::IGNORE (you can change this behaviour
with AuthByPolicy, see Section 6.12.12 on page 35).

Your handle_request function may want to use utility functions in Radius::Radius (see
Radius.pm) to examine attributes in the incoming request, and to construct replies.
There are some convenience routines in Client.pm for packing sending replies to the
original requester, such as

$p->{Client}->replyWithDenial($p,
"Your Message here’)

and

$p->{Client}->replyTo($rp, $p);

If your handler cannot successfully handle the request, perhaps due to some unforeseen
event, software failure, system unavailability etc., it is common to not reply at all to the
original request. This will usually force the original NAS to retransmit to another server

as a fallback. You can do this by returning $main::IGNORE fnammdle_request

AuthGeneric

This is a generic authentication module superclass. It implements behaviour that will be
required in most authentication modules, and therefore most modules should inherit
from it. Most simple authentication can be handled merely by overriding the findUser()
method, which is expected to find and return a User object given a user name. The Auth-
Generic::handle_request handles all the cascading of DEFAULT users, checking of
check items, assembling replies etc. All you have to do is find the user in your database
and return it in findUser().

AuthGeneric only responds to Access-Request messages. Accounting-Requests are
accepted but ignored (i.e. it does nothing with them). If you want to do something with
accounting messages (other than what Realm.pm does, such as logging to the account-
ing log file or wtmp file), you will probably want to override handle_request, pass
Access-Request messages to $self->SUPER::handle_request(), and process Account-
ing-Request messages yourself.

If your handler needs to fork so it can do a “slow” authentication or accounting task, you
can callAuthGeneric::handlerFork , which will arrange for the handler to
fork(2), and also arrange for the child to exit after handling is complete.

AuthGeneric has a number of other methods that you can override for specific functions
like:

* log($p, $s) Logs a message that originated in that class. $p is a message prior-
ity (see Log.pm). $s is a message. The base class behaviour is to log to the all the
logging systems configured into Radiator by callimgin::log($p, $s)

Step-by-step

Assuming you want to create a custom AuthBy module called XYZ, these are the basic
steps:

108 of 124

Radiator Radius Server

Adding custom AuthBy modules

175

Figure out what parameters your new module needs from the Radiator configuration
file to configure its behaviour.

Copy AUthTEST.pm to AuthXYZ.pm
Replace all instances of TEST in AuthXYZ.pm with XYZ.

Implement thekeyword function so it parses the parameters that your new module
needs.

If your module needs any sub-objects, implementabject function to parse out
any sub-objects (see example codRadius::Realm->object)

Implement the handle_request function. You may wish to handle Access-Requests
and Accounting-Requests differently.

Add a test realm to the configuration file with something like:

<Realm xxxx>
RealmParameterl
<AuthBy XYZ>
AuthByParameterl

</AuthBy>
</Realm>

Restart or SIGHUP Radiator.
Test your new module by sending requests to the server withdpeitst utility.
Install your new module witmake install

If your authentication method is simple and synchronous, your class only has to over-
ride the following methods in AuthGeneric:

new Create a new instance by callidgass->SUPER::new($file);

keyword Recognize any class specific parameter keywords from the configuration
file and remember them.

findUser Construct and return a User object if the named user can be found in
your database.

Class Hierarchy

This section is only of interest to developers who plan to build new Radiator classes. It
shows the class inheritance hierarchy of all the classes provided with Radiator.

Radiator Radius Server 109 of 124

Compatibility with Livingston and other servers

FIGURE 8. Radiator Class inheritance hierarchy
AuthPLATYPUS, AuthDBFILE AuthUNIX
AuthRODORPI,
ERALD
AUthEM AuthLDAPSDK AuthEXTERNAL
AuthLDAP2
AuthNT AuthlPASS AuthGROUP AuthLDAP AuthNISPLUS AuthTACACSPLUS
AuthPAM
AuthS(|2L AuthSYSTEM AuthFILE [AuthRADIUS AuthCDB AuthTEST
SessSQL SessINTERNAL SessDBM
Log QL LogSYSLOG LogFILE
| Realm
SqIDb LogGenerlc ServerConfig SessGeneric AuthGeneric Client Handler
Configurable
ServerConfig
LogSQL LogSYSLOG LogFILE
Radius User 9 (T gT g
Realm Client
RDict Select RadpwtstGui LogGeneric
AttrVal
SNMPAgent Mib
Log

18.0 Compatibility with Livingston and other servers

The flexibility of Radiator allows you to easily emulate the behaviour of Livingston and
other similar radius servers. These radius servers use special entries in the user database
file to control the behaviour of the server. Radiator, in contrast, uses the configuration
file for controlling the server. Nevertheless, Radiator allows you to use the Group and
Auth-Type check items that are sometimes used with Livingston.

110 of 124 Radiator Radius Server

Interoperation with iPASS Roaming

19.0

There is an example configuration file in goodies/livingCompat.cfg in the Radiator dis-
tribution. That configuration file makes Radiator behave in the same way as a Living-
ston or Cistron radius server. If you use “Auth-Type = System” in a user entry in the user
file, Radiator will consult the UNIX password file /etc/password to authenticate the user.
Radiator will also behave in the same way with respect to DEFAULT users. You can
have multiple DEFAULT users a user database. During authentication, if there is no
username entry found for the user, the DEFAULT entries are checked in the order in
which they appear in the file (this is the case with both AuthBy FILE and AuthBy
DBM). The DEFAULT entries will continue to be checked in order until one is found
where all the check items match and where the Fall-Through reply item is not set to
“Yes”.

Interoperation with iPASS Roaming

191

iPASS (TM) operate a Global Roaming system that can allow your users to log in at any
cooperating ISP around the world. $ep://www.ipass.com for more details.

In order to interoperate you must enter into a commercial arrangement with iPASS.
iPASS will then be able to provide the software that Radiator needs to communicate
with the iPASS network. If you wish to do outbound authentication with the iPASS net-
work, you will also the IpassPerl software from Open System Consultantsitpele
ww.open.com.au for contact details.

Interoperation with iPASS involves configuring Radiator with a special <AuthBy
IPASS> clause, as well as installing and configuring some other pieces of software.
Before we discuss this, it is well to understand how iPASS interoperation works.

iPASS regard roaming as two distinct products:

* Net Server, where you originate authentication and accounting requests for users
who dial in to your POP. The requests are sent to the iPASS network, where they are
authenticated, possibly by someone else’s Roam Server. This happens when some-
one else’s customers dial in to your POP. We call this “outbound”.

* Roam Server, where authentication and accounting requests arrive from the iPASS
network. This happens when your customers dial in to someone else’s POP. We call
this “inbound”.

Radiator uses different methods for handling inbound and outbound iPASS requests.
And each must be set up separately with Radiator and with iPASS.

iPASS Outbound

Outbound requests use a special library that you must get from iPASS. The library pro-
vides the basic routines for communicating with the iPASS network. Open System Con-
sultants provide a Perl wrapper for the library called IpassPerl that allows Radiator to
use the iPASS library. Finally, there is a special authentication module called <AuthBy
IPASS> which knows how to handle iPASS authentication. See Figure 9 on page 112.

Radiator Radius Server 111 of 124

Interoperation with iPASS Roaming

FIGURE 9. Schematic diagram of how iPASS outbound requests are handled
Radius request
NAS
< Radius reply
Radiator
<Client .|.>
<Realm .|.>
N N N
thBy IPAS
u
Plug-In __—Y" | AuthBy ... AuthBy ... y
authentication
modules
IpassPerl r A
\ \
-
;s |
iPASS encrypted - /
Lilbraries proprietary iPASS Network
protocol / /
{
N /
— - < /
~ =

In

order to configure Radiator to handle outbound iPASS requests, you need to do the

following things:

1.

Enter into a commercial arrangement for iPASS to provide Net Server access to you.
iPASS will provide you with an ISP partner number.

Request the iPASS library package for your platform from iPASS. This package will
usually include the VNAS software required for inbound operation too. This is not
the normal package provided to iPASS customers. The normal package does not
include the iPASS libraries. You must make a special request to iPASS for them.

Install and configure the library package according the instructions included with it.
This will involve configuring the package, requesting and receiving an encryption
certificate, and submitting details of your server and realm to iPASS. Install the
package in the normal place (/usr/ipass).

Test the installed package by using the test programs provided with it. Make sure it
is really working properly before you go on to the next step.

Acquire the IpassPerl module from Open System Consultants. This module allows
Radiator to use the iPASS library package.

6. Install IpassPerl by following the instructions included with it in the README file.
7. Configure Radiator by adding a default Realm (to handle all non-local realms), with

an authentication method of IPASS, for example:

112 of 124

Radiator Radius Server

Interoperation with iPASS Roaming

<Realm DEFAULT>
<AuthBy IPASS>
</AuthBy>
</Realm>

8. Test Radiator with the radpwtst program to make sure that requests for non-local
realms are forwarded to iPASS.

Hint: If it doesn’t seem to be working, add the Debug parameter to AuthBy IPASS and
look in the iPASS trace file (usuallysr/ipass/logs/iprd.trace).

Hint: You may need to run Radiator as root on Unix, as the iPASS encryption certificate
may be installed read-only by root.

19.2 iPASS Inbound

Inbound requests are received by a special server that you also must get from iPASS
called VNAS (for Virtual NAS). VNAS receives requests from the iPASS network and
then sends them to Radiator as ordinary Radius requests. See Figure 10 on page 113.
VNAS will usually run on the same host as Radiator, or possibly on a different host in
your network.

FIGURE 10. Schematic diagram of how iPASS inbound requests are handled
AN
\ \
- |
<o encrypted
. IPASS Network / proprietary VNAS
J - protacol
{
« /
> / Radius
- refluests and
replies|
Radiator
<Client ...
<Real
AuthB AuthBy uthBy IPAS
uthBy ...
Plug-In _——
authentication
modules

Radiator Radius Server 113 of 124

Interoperation with GRIC Global Roaming

20.0

In order to configure Radiator to handle inbound iPASS requests, you need to do the fol-
lowing things:

1. Enter into a commercial arrangement for iPASS to provide Roam Server access to
you. iPASS will provide you with an ISP partner number.

2. Request the iPASS VNAS software for your platform from iPASS.

3. Install and configure the VNAS software according to the instructions included with
it. This will involve configuring the package, requesting and receiving an encryption
certificate, and submitting details of your sever and realm to iPASS. Install the pack-
age in the normal place (/usr/ipass). If you have already done this for outbound
requests above, you don’t need to do it again.

4. Configure Radiator in the usual way for your local realms. Add a Client clause spec-
ifying the host where the VNAS software is running, and the shared secret you con-
figured into VNAS:

<Client localhost>
Secret vnassecret

</Client>

<Realm ...>

5. Test that VNAS sends requests to Radiator by using the test software provided with
VNAS.

Hint: VNAS needs a clients file to locate the shared secret for communicating with

Radiator. It will ask for the location of the file during VNAS configuration. You should
specify something likéusr/ipass/raddb/clients

Interoperation with GRIC Global Roaming

GRIC (Global Roaming Internet Consortium) operate a Global Roaming system that
can allow your users to log in at any cooperating ISP around the world. See http://
www.gric.com for more details.

Interoperation with GRIC is fairly straightforward. The interface between Radiator and
the GRIC Radius server (called AimTraveler) is a standard Radius proxy setup. The
GRIC AimTraveler might be running on one of your hosts, or possibly on a remote host
operated by GRIC. In any case you will need to arrange for a shared secret to be config-
ured into both Radiator and the AimTraveler to which you are forwarding.

In this kind of configuration, all requests you receive for realms that you know about are
satisfied immediately by Radiator in the usual way (usually via a local database of some
kind). Requests for any other realm are forwarded to the GRIC server as a standard
Radius request. Eventually, the GRIC server will reply, and the reply will be forwarded
back to the original NAS. This is standard Radius proxying.

In order to work with GRIC you must first enter into a commercial arrangement with
GRIC. You will also discuss with GRIC issues like the location of the GRIC server with
which you will communicate. You must then configure your Radiator to forward all
non-local realms to the GRIC server. In order to do this you must first know the DNS

114 of 124

Radiator Radius Server

Using SQL with various database vendors

name or the IP address of the host where the GRIC AimTraveler is running, what ports
it is listening to, and the shared secret. Then you must add a DEFAULT Realm to the
Radiator configuration which specifies an AuthBy RADIUS to forwards all requests for
non-local realms to the AimTraveler.

You must also configure Radiator to respond to requests sent to you by the GRIC
AimTraveler. This will usually involve setting up a <Client> clause specifying the

shared secret. Note that when the AimTraveler server acts as a client, it does not always
set the correct signature on Accounting-Requests, so you will need to enable IgnoreAc-
ctSignature for that Client.

In the following example, Radiator has been configured to serve a local NAS called
mynas.open.com.au, and to forward all non-local realms to s1.gric.com, with a shared
secret of mysecret. The local realm for your own users is open.com.au, which is config-
ured to authenticate by whatever means you like.

This is for our own local NAS
<Client mynas.open.com.au>
Secret XXxXxx
</Client>
This allows us to handle requests from GRIC
<Client s1.gric.com>
Secret mysecret
IgnoreAcctSignature
</Client>
This authenticates our local realm by whatever
means we like
<Realm open.com.au>
<AuthBy>
whatever
</AuthBy>
</Realm>
This sends all non-local realms to GRIC
<Realm DEFAULT>
<AuthBy RADIUS>
Secret mysecret
Host sl.gric.com
</AuthBy>
</Realm>

21.0 Using SQL with various database vendors

Radiator's AuthBy SQL clause ahdildsgl utility can be used with any Relational
Database that is supported by a Perl DBD module. That currently includes:

e DB2

e Fulcrum
* Informix
* Ingres

* mSQL

Radiator Radius Server 115 of 124

Using SQL with various database vendors

21.1

21.2

* mysql

e ODBC

* Oracle

e pNET

* PostgreSQL
¢ Qbase

* Solid

e Sybase

* Xbase

We have not directly tested every one of these. We have tested some of them, and this
section contains some tips about using Radiator with them. We supply some simple
schemas with Radiator for a few databases. See the goodies directory in the distribution
for scripts to create them. You will probably want to create a more elaborate schema to
handle the tasks you need, and the schemas we supply should be regarded as a starting
point only. You should probably consult with a Database Analyst to maximize the per-
formance of your SQL database.

General

Whenever Perl's DBI module is used to work with a database, you need to supply up to
3 pieces of information in order to specify the database to which you want to connect:
* DBSource

This is the data source name. It has the special format: “dbi:drivername:options”,
wheredrivernameis the name of the DBI driver to use, amtionsis an option
string whose exact format depends on the DBI driver you are using.

e DBUsername

This is usually the SQL user name to use to connect to the SQL database, but for
some database types, it has a different meaning.

* DBAuth

This is usually the password for DBUsername, but for some database types, it has a
different meaning or is not required

mSQL

In DBSource, drivername is “mSQL”, and options is the database name. You can also
specify the host where the server is running and the port number of the server. DBUser-
name is the database name to user, and DBAuth is not required

To create a new database:

msgladmin create radius
msql radius <msq|ICreate.sql

Configure your SQL clause like this:

116 of 124

Radiator Radius Server

Using SQL with various database vendors

21.3

21.4

DBSource dbi:mSQL:radius
DBUsername
DBAuth

Use buildsql like this:
buildsql -dbsource dbi:mSQL:radius
-dbusername radius ...

You must use the DBD module Msql-Mysql-modules-1.1828 or better to connect to
mSQL.
Hint: The general format for DBSource is:

dbi:mSQL[:database[:hostname[:port]]]

mysq|

In DBSource, drivername is “mysqgl”, and options is the database name. You can also
specify the host where the server is running and the port number of the server. DBUser-
name is the database name to user, and DBAuth is not required

To create a new database:
mysqgladmin create radius
mysgql radius <mysqlCreate.sql
Configure your SQL clause like this:

DBSource dbi:mysqgl:radius
DBUsername radius
DBAuth password

Use buildsql like this:

buildsql -dbsource dbi:mysqgl:database
-dbusername radius -dbauth password

You must use the DBD module Msql-Mysql-modules-1.1828 or better to connect to
mysq|.
Hint: The general format for DBSource is:

dbi:mysql[:database[:hostname[:port]]]

Oracle

In DBSource, drivername is “Oracle”, and options is the SID of the Oracle database
instance you want to use. DBUsername is the Oracle user name, and DBAuth is the
password for the Oracle user.

To create a new database:

sqlplus user/password@sid @ansiCreate.sql

Configure your SQL clause like this:

Radiator Radius Server 117 of 124

Using SQL with various database vendors

215

21.6

DBSource dbi:Oracle:sid
DBUsername user
DBAuth password

Use buildsql like this:

buildsql -dbsource dbi:Oracle:sid
-dbusername user -dbauth password ...

Sybase

In DBSource, drivername is “Sybase”, and options is the server name of the Sybase
server to use. DBUsername is the Sybase user name, and DBAuth is the password for
the Sybase user.

To create a new database:

isql -Uuser -Ppassword -Sserver -i sybaseCreate.sql

Configure your SQL clause like this:

DBSource dbi:Sybase:server
DBUsername user
DBAuth password

Use buildsql like this:

buildsql -dbsource dbi:Sybase:sid
-dbusername user -dbauth password ...

PostgreSQL

In DBSource, drivername is “Pg”, and options is the database name to use. DBUser-
name is the PostgresSQL user name, and DBAuth is the password for the PostgresSQL
user. You should note that some versions of PostgreSQL do not permit columns with the
name PASSWORD. Therefore, you may have to alter the name of the PASSWORD col-
umn to PASS_WORD, and use that column name in your AuthSelect configuration
parameter.

To create a new database:

createuser user
createdb radius
pgsql radius

\i postgresCreate.sql

Configure your SQL clause like this:

DBSource dbi:Pg:dbname=radius
DBUsername user
DBAuth password

Use buildsql like this:

buildsql -dbsource dbi:Pg:dbname=radius
-dbusername user -dbauth password ...

118 of 124

Radiator Radius Server

Performance and Tuning

21.7

21.8

22.0

ODBC

To use ODBC, you must first create the database and tables in a way that depends on the
type of database to which you are going to connect. See your vendor’s documentation.
You will also need to install and configure your ODBC manager. The way to do this also
depends on your ODBC data manager. For Intersolve DataDirect on Solaris, you will
need to set up a .odbc.ini file in your home directory. For Win95 and NT, you will need
to use the ODBC administration tools and add a System DSN (data source name).

Configure your SQL clause like this:

DBSource dbi:ODBC:datasourcename
DBUsername user
DBAuth password

Use buildsql like this:

buildsql -dbsource dbi:ODBC:datasourcename
-dbusername user -dbauth password ...

Interbase

Interbase is a full ANSI compliant database server available for free on a number of
Unix platforms including Linux, see http://www.interbase.com.

Interbase is not yet supported by a DBD perl module, but we have a port to it anyway.
You need to compile and instdbperl , available from the Interbase web site. Then

you need to get the SqIDbINTERBASE.pm file from the goodies directory, and use it to
replace SqlDb.pm in the Radius directory. There is an example schema in goodies/inter-
baseCreate.sql. You can then use AuthBy SQL in the usual way, with a couple of little
tweaks. Note that DBSource does not look like a standard DBI source name, and the
name of the password column is PASS_WORD (PASSWORD is a reserved word in
Interbase)

Configure your SQL clause like this:

DBSource hostname:databasepath

DBUsername username

DBAuth password

AuthSelect select PASS_WORD from SUBSCRIBERS where\
USERNAME="%n’

Buildsgl and the CGI scripts do not yet support Interbase.

Performance and Tuning

Radiator has been tuned for maximum performance. The results of performance testing
are shown in Table 3 on page 120. These tests were carried out by using radpwtst as the
client to send a representative mix of requests to the server. The tests were performed
under the following conditions:

* All servers were configured without optional features.

Radiator Radius Server 119 of 124

Performance and Tuning

e Sparc 5 Solaris. All servers (except Microsoft SQL) on the Sparc 5. Client on remote
host. Microsoft SQL server on remote host.

e Sparc 2 Linux. All servers on the Sparc 2. Client on remote host. LDAP server on

remote host,

* Windows 95. Main server only on PC. Clients, Oracle server and secondary radius

server on remote host.

* Windows NT. Main server only on PC. Clients, Oracle server and secondary radius
server on remote host. Microsoft SQL on test host.

o

o

TABLE 3. Some actual performance measurements of radiusd, requests per second.
Sparc 5 Sparc 2 166MHz PC 166Mhz PC

AuthBy module Solaris Linux Windows 95 Windows NT
TEST 34 23 30 32
FILE (3 users cached) 31 20 25 26
FILE (10000 cached users) 31 20 25 26
FILE (3 users Nocache) 27 20 25 26
FILE (1000 users Nocache) 12 18 18
FILE (10000 users Nocache) 3 3 3
DBFILE (3 users) 30 20 25 26
DBFILE (10000 users) 30 20 25 26
UNIX (2 users) 31 20 30 32
RADIUS->TEST 10 8 16 15
RADIUS->FILE (3 users cached) 10 8 14 12
SQL->mSQL (10000 users) 15 11 not tested not tested
SQL-mysgl (10000 users) 16 not tested not tested not testeg
SQL->Oracle (10000 users) 13 not tested not tested not teste
SQL->Sybase (10000 users) 12 not tested not tested not teste
SQL-postgreSQL 9 not tested not tested not tested
SQL->ODBC->Oracle (10000 12 not tested 15 15
users)
EMERALD 12 not tested not tested 12
PLATYPUS 17 not tested not tested 18
LDAP->localhost 15 13 not tested not tested
NT not tested not tested 12 12
If you find you need to get better performance than you are achieving, you might try the
following ideas and suggestions:
e Operate multiple radius servers, and share the load between them. You would nor-

mally make each radius server the primary radius server for some of your NASs, and

120 of 124 Radiator Radius Server

Getting Help

23.0

the secondary for a different group of NASs. You should probably consider doing
this anyway in order to make your network more robust in the face of a network or
server failure.

e Use DBM, SQL, cached FILE or UNIX authentication in preference to any other
method.

* If you are using SQL, make sure that your User and Accounting tables have been
designed for performance. This will usually mean adding indexes to the tables.
Without indexes, selects on large tables can be very slow. A properly designed index
will usually speed them up enormously.

* Deploy Radiator on a different (faster) machine. Radiator is highly portable and will
run on most Unix hosts, Windows NT and Windows 95.

¢ Use exact Realm names instead of regexps

* Ifyou are authenticating multiple realms, consider creating sub-servers, one for each
realm, and a main server that uses AuthBy RADIUS to retransmit to the sub-servers.

¢ Deploy any sub-servers on other machines on the same network as the main server.
e If you are using SQL, deploy the SQL server and Radiator on different hosts.

* If you are using LDAP, deploy the LDAP server and Radiator on different hosts.

¢ Don't specify RewriteUsername unless you need it.

* If you don't need accounting log files (perhaps you are already getting accounting
logged by SQL?) turn off AcctLogFileName.

* If you don't need wtmp log files (perhaps you are already getting accounting logged
by SQL? or AcctLogFileName) turn off WtmpFileName.

* Use the lowest Trace level you really need. Higher levels slow radiusd down.
* Use as few check items as possible.

* Don't use Simultaneous-Use check items that specify a filename.

¢ Don't use check items that are regular expressions.

¢ Use the Fork parameter if your authentication method is “slow”.

* Don't specify MaxSessions or Simultaneous-Use. If you do, don't specify the Nas-
Type in the <Client> clause (interrogating the NAS to confirm when logins are
exceeded slows Radiator down).

¢ Don't use PasswordLogFileName unless you really need it.

¢ Don't specify an external Session Database with the <SessionDatabase ...> clause
unless you need Simultaneous-Use limits and you running multiple instances of
Radiator.

Getting Help

23.1

Support contract holders

Radiator support may be purchased at the time you purchase Radiatdtp%ee
www.open.com.au/radiator/ordering.html for details. A support contract
lasts for one year, and covers up to 4 hours of email support in that period.

Radiator Radius Server 121 of 124

Getting Help

23.2

23.3

Open System Consultants will respond promptly to support email during business
hours, Australian Eastern Standard time. Telephone suppatpsovided. We will

keep track of the effort required to answer your support email, and inform you when
your prepaid support time has expired.

If you have a Radiator support contract, you may send email to

radiator-support@open.com.au
If you don't have a support contract, we will not respond to your query on this address.

If you need an urgent response outside of the standard email support hours, you may
want to post to the Radiator mailing list instead. Someone will be sure to be awake
somewhere in the world.

No support contract

The standard Radiator license does not include support, but it does include the full
source code and free upgrades, plus access to the Radiator mailing list. This means you
can help yourself, and you can work with other Radiator users in the user community. In
order to participate with others in this effort, you can join the Radiator mailing list by
sending email with the single woslibscribe in the body fotin the subject line) to

radiator-request@open.com.au

After subscribing you can post to the mailing list by mailing to

radiator@open.com.au

The staff of OSC monitor the Radiator mailing list and frequently answer questions. Its
very active so don't hesitate to use it. There is an archive of the mailing list available at
http://www.thesite.com.au/~radiator/

What to do if you need help

Before you post to the support address or mailing list asking for assistance, we suggest
you go through the following check list:

1. Consult this reference manual.
2. Consult the FAQ for extra hints.

3. Consult the mailing list archive http://www.thesite.com.au/~radia-
tor/ for more hints.

4. Check that you are using the latest version of Radiator. See
http://www.open.com.au/radiator/downloads, use the username and password we
have issued to you. Upgrade if you need to.

5. Check whether there are any patches that address your problem. See the README
file in the patches directory for your release at
http://www.open.com.au/radiator/downloads/patches-*/README. Apply the patch
if you think you might need it.

6. If you still have the problem, post to the mailing list by mailing to:
radiator@open.com.au. | f you have a support contract, send email to

122 of 124

Radiator Radius Server

Getting Help

23.4

23.5

23.6

23.6.1

23.6.2

radiator-support@open.com.au.
Be sure to include at least the following information:

¢ A detailed description of the problem.
* Your Radiator configuration file (remove any secrets and passwords first).

* An extract from your Radiator log file (with Trace level of 4) illustrating the prob-
lem, or at least what is happening at the time of the problem.

* Details of the computer type, operating system etc.

This information helps people to understand your problem and help find a solution more
quickly.

Bug reports

We are interested in your feedback, both positive and negative, and bug reports. Please
send them to info@open.com.au. Licensees are entitled to free upgrades, and we do fix
bugs that are reported to us, so if you report a bug, you can expect to get an upgrade
with a fix one day. If you don't report it, it might never get fixed.

RFCs

A full set of RFCs including the ones relevant to Radius, RFC 2138 and RFC 2139, can
be found at

http://www.internic.net/ds/rfc-index.html
Other mailing lists

If you need assistance with operating or configuring your NAS, there are several mailing
lists around:

Cisco
There is a Net News group for cise@mmp.dcom.sys.cisco.

Ascend

There are two mailing lists for Ascend users. You can subscribe to either list, or a digest
version of the list. The digest version accumulates all messages received during the day
into one (or more) messages sent out each evening.

To subscribe to the main list, send a message with the words

subscribe ascend-users
in the body of the message (not the subject) to ascend-users-request@bungi.com.

To subscribe to the digest version of the list send a message with the word

subscribe

in the body of the message (not the subject) to ascend-users-digest-request@bungi.com

Radiator Radius Server 123 of 124

Getting Help

23.6.3

The submission address to send entries to the list is: ascend-users@bungi.com.

Ascend maintain a web site with FAQs and product details at

http://www.ascend.com

Livingston Mailing Lists

Livingston kindly host a number of mailing lists for different groups interested in Liv-
ingston products and Radius in general. More detail on Livingston products and search-
able mailing list archives can be found at

http://www.livingston.com

To subscribe to a Livingston mailing list, email majordomo@Ilivingston.com with

subscribe list-name

in the body of your letter, where list-name is one of the following:

* portmaster-announce
Announcements from Livingston.
* portmaster-users
General discussion group, will also have all traffic from -announce.
* portmaster-users-digest
A digested version of the -users group.
e portmaster-radius
A discussion group for Radius developers working with Livingston equipment.
e portmaster-radius-digest
A digested version of the -radius group

To unsubscribe, email the same address with

unsubscribe list-name

124 of 124

Radiator Radius Server

	1.0 Table of Contents
	2.0 Introduction
	3.0 Installation (Unix)
	4.0 Installation (Windows 95/98/NT)
	4.1 ActiveState
	4.2 Other Win95 distributions
	4.3 Notes for PC installers and users

	5.0 Post installation and configuration
	5.1 Trouble?

	6.0 Configuration
	6.1 General information
	6.2 Special characters in file names and other parameters
	6.3 Global parameters
	6.3.1 Foreground
	6.3.2 LogStdout
	6.3.3 Trace
	6.3.4 AuthPort
	6.3.5 AcctPort
	6.3.6 BindAddress
	6.3.7 LogDir
	6.3.8 DbDir
	6.3.9 LogFile
	6.3.10 DictionaryFile
	6.3.11 PidFile
	6.3.12 Syslog
	6.3.13 SnmpgetProg
	6.3.14 FingerProg
	6.3.15 PmwhoProg
	6.3.16 LivingstonMIB
	6.3.17 LivingstonOffs
	6.3.18 LivingstonHole
	6.3.19 RewriteUsername
	6.3.20 SocketQueueLength
	6.3.21 PreClientHook

	6.4 <Client xxxxxx>
	6.4.1 Secret
	6.4.2 DefaultRealm
	6.4.3 IgnoreAcctSignature
	6.4.4 DupInterval
	6.4.5 NasType
	6.4.6 SNMPCommunity
	6.4.7 FramedGroupBaseAddress
	6.4.8 RewriteUsername
	6.4.9 IdenticalClients
	6.4.10 PreHandlerHook
	6.4.11 LivingstonOffs
	6.4.12 LivingstonHole

	6.5 <SessionDatabase SQL>
	6.5.1 Identifier
	6.5.2 DBSource
	6.5.3 DBUsername
	6.5.4 DBAuth
	6.5.5 AddQuery
	6.5.6 DeleteQuery
	6.5.7 ClearNasQuery
	6.5.8 CountQuery

	6.6 <SessionDatabase DBM>
	6.6.1 Identifier
	6.6.2 Filename

	6.7 <Log FILE>
	6.7.1 Filename
	6.7.2 Trace

	6.8 <Log SYSLOG>
	6.8.1 Facility
	6.8.2 Trace

	6.9 <Log SQL>
	6.9.1 DBSource, DBUsername, DBAuth
	6.9.2 Table
	6.9.3 Trace

	6.10 <SNMPAgent>
	6.10.1 Port
	6.10.2 BindAddress
	6.10.3 Community

	6.11 <Realm realmname>
	6.12 <Handler attribute=value,attribute=value,>
	6.12.1 RewriteUsername
	6.12.2 RewriteFunction
	6.12.3 MaxSessions
	6.12.4 AcctLogFileName
	6.12.5 AcctLogFileFormat
	6.12.6 WtmpFileName
	6.12.7 PasswordLogFileName
	6.12.8 ExcludeFromPasswordLog
	6.12.9 AccountingHandled
	6.12.10 PreAuthHook
	6.12.11 PostAuthHook
	6.12.12 AuthByPolicy
	6.12.13 AuthBy
	6.12.14 <AuthBy xxxxxx>

	6.13 <AuthBy xxxxxx>
	6.13.1 Fork
	6.13.2 UseAddressHint
	6.13.3 DynamicReply
	6.13.4 DynamicCheck
	6.13.5 Identifier
	6.13.6 StripFromReply
	6.13.7 AddToReply
	6.13.8 DefaultReply
	6.13.9 FramedGroup
	6.13.10 NoDefaultIfFound
	6.13.11 DefaultSimultaneousUse

	6.14 <AuthBy TEST>
	6.15 <AuthBy FILE>
	6.15.1 Filename
	6.15.2 Nocache
	6.15.3 AcceptIfMissing

	6.16 <AuthBy DBFILE>
	6.16.1 Filename
	6.16.2 AcceptIfMissing

	6.17 <AuthBy CDB>
	6.17.1 Filename
	6.17.2 AcceptIfMissing

	6.18 <AuthBy GROUP>
	6.18.1 AuthByPolicy
	6.18.2 RewriteUsername

	6.19 <AuthBy IPASS>
	6.19.1 Debug
	6.19.2 Config
	6.19.3 Trace
	6.19.4 Home

	6.20 <AuthBy UNIX>
	6.20.1 Filename
	6.20.2 Match
	6.20.3 GroupFilename
	6.20.4 Nocache

	6.21 <AuthBy EXTERNAL>
	6.21.1 Command
	6.21.2 DecryptPassword

	6.22 <AuthBy NT>
	6.22.1 Domain
	6.22.2 DomainController

	6.23 <AuthBy SQL>
	6.23.1 DBSource
	6.23.2 DBUsername
	6.23.3 DBAuth
	6.23.4 AuthSelect
	6.23.5 AuthColumnDef
	6.23.6 AccountingTable
	6.23.7 EncryptedPassword
	6.23.8 AccountingStartsOnly
	6.23.9 AccountingStopsOnly
	6.23.10 AcctColumnDef
	6.23.11 AcctSQLStatement
	6.23.12 Timeout

	6.24 <AuthBy RADIUS>
	6.24.1 Host
	6.24.2 Secret
	6.24.3 AuthPort
	6.24.4 AcctPort
	6.24.5 Retries
	6.24.6 RetryTimeout
	6.24.7 StripFromRequest
	6.24.8 AddToRequest
	6.24.9 NoForwardAuthentication
	6.24.10 NoForwardAccounting
	6.24.11 LocalAddress
	6.24.12 ReplyHook

	6.25 <AuthBy EMERALD>
	6.25.1 TimeBanking
	6.25.2 AddATDefaults

	6.26 <AuthBy PLATYPUS>
	6.26.1 DBSource, DBUsername, DBAuth
	6.26.2 AccountingTable
	6.26.3 AcctColumnDef

	6.27 <AuthBy RODOPI>
	6.28 <AuthBy LDAP> <AuthBy LDAP2> and <AuthBy LDAPSDK>
	6.28.1 Host
	6.28.2 Port
	6.28.3 UseSSL
	6.28.4 AuthDN
	6.28.5 AuthPassword
	6.28.6 BaseDN
	6.28.7 UsernameAttr
	6.28.8 PasswordAttr
	6.28.9 EncryptedPasswordAttr
	6.28.10 CheckAttr
	6.28.11 ReplyAttr

	6.29 <AuthBy SYSTEM>
	6.29.1 UseGetspnam

	6.30 <AuthBy TACACSPLUS>
	6.30.1 Host
	6.30.2 Key
	6.30.3 Port
	6.30.4 Timeout

	6.31 <AuthBy NISPLUS>
	6.31.1 Table
	6.31.2 Query
	6.31.3 EncryptedPasswordField
	6.31.4 AuthFieldDef

	6.32 <AuthBy PAM>
	6.32.1 Service

	6.33 <AuthBy PORTLIMITCHECK>
	6.33.1 CountQuery
	6.33.2 SessionLimit
	6.33.3 ClassForSessionLimit

	7.0 radiusd
	8.0 radpwtst
	8.1 The radpwtst GUI

	9.0 builddbm
	10.0 buildsql
	11.0 radacct.cgi
	11.1 Installation
	11.2 Usage
	11.3 Secure mode

	12.0 radwho.cgi
	12.1 Installation
	12.2 Usage

	13.0 Check and Reply items
	13.1 Check items
	13.1.1 User-Password, Password
	13.1.2 Encrypted-Password
	13.1.3 Realm
	13.1.4 Expiration
	13.1.5 Auth-Type
	13.1.6 Group
	13.1.7 Block-Logon-From
	13.1.8 Block-Logon-To
	13.1.9 Prefix
	13.1.10 Suffix
	13.1.11 Time
	13.1.12 Simultaneous-Use
	13.1.13 Connect-Rate
	13.1.14 NAS-Address-Port-List
	13.1.15 Any other attribute defined in your dictionary

	13.2 Reply items
	13.2.1 Framed-Group
	13.2.2 Ascend-Send-Secret
	13.2.3 Tunnel-Password
	13.2.4 Fall-Through
	13.2.5 Any other attribute defined in your dictionary

	14.0 Rewriting user names
	15.0 File formats
	15.1 Dictionary File
	15.1.1 ATTRIBUTE
	15.1.2 VALUE
	15.1.3 VENDORATTR
	15.1.4 Available dictionaries

	15.2 Flat file user database
	15.3 DBM user database
	15.4 Unix password file
	15.5 Accounting log file
	15.6 Password log file
	15.7 Portlist file

	16.0 High availability for radiusd
	16.1 Using restartWrapper
	16.2 Using init
	16.3 Using inetd
	16.4 As a System Service on NT

	17.0 Adding custom AuthBy modules
	17.1 Loading and configuring
	17.2 Handling Requests
	17.3 AuthGeneric
	17.4 Step-by-step
	17.5 Class Hierarchy

	18.0 Compatibility with Livingston and other servers
	19.0 Interoperation with iPASS Roaming
	19.1 iPASS Outbound
	19.2 iPASS Inbound

	20.0 Interoperation with GRIC Global Roaming
	21.0 Using SQL with various database vendors
	21.1 General
	21.2 mSQL
	21.3 mysql
	21.4 Oracle
	21.5 Sybase
	21.6 PostgreSQL
	21.7 ODBC
	21.8 Interbase

	22.0 Performance and Tuning
	23.0 Getting Help
	23.1 Support contract holders
	23.2 No support contract
	23.3 What to do if you need help
	23.4 Bug reports
	23.5 RFCs
	23.6 Other mailing lists
	23.6.1 Cisco
	23.6.2 Ascend
	23.6.3 Livingston Mailing Lists

